SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Homberg Uwe) "

Sökning: WFRF:(Homberg Uwe)

  • Resultat 1-11 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beetz, M Jerome, et al. (författare)
  • Topographic organization and possible function of the posterior optic tubercles in the brain of the desert locust Schistocerca gregaria
  • 2015
  • Ingår i: Journal of Comparative Neurology. - : Wiley. - 1096-9861 .- 0021-9967. ; 523:11, s. 1589-1607
  • Tidskriftsartikel (refereegranskat)abstract
    • Migrating desert locusts, Schistocerca gregaria, are able to use the skylight polarization pattern for navigation. They detect polarized light with a specialized dorsal rim area in their compound eye. After multistage processing, polarization signals are transferred to the central complex, a midline-spanning brain area involved in locomotor control. Polarization-sensitive tangential neurons (TB-neurons) of the protocerebral bridge, a part of the central complex, give rise to a topographic arrangement of preferred polarization angles in the bridge, suggesting that the central complex acts as an internal sky compass. TB-neurons connect the protocerebral bridge with two adjacent brain areas, the posterior optic tubercles. To analyze the polarotopic organization of the central complex further, we investigated the number and morphologies of TB-neurons and the presence and colocalization of three neuroactive substances in these neurons. Triple immunostaining with antisera against Diploptera punctata allatostatin (Dip-AST), Manduca sexta allatotropin (Mas-AT), and serotonin (5HT) raised in the same host species revealed three spatially distinct TB-neuron clusters, each consisting of 10 neurons per hemisphere: cluster 1 and 3 showed Dip-AST/5HT immunostaining, whereas cluster 2 showed Dip-AST/Mas-AT immunostaining. Five subtypes of TB-neuron could be distinguished based on ramification patterns. Corresponding to ramification domains in the protocerebral bridge, the neurons invaded distinct but overlapping layers within the posterior optic tubercle. Similarly, neurons interconnecting the tubercles of the two hemispheres also targeted distinct layers of these neuropils. From these data we propose a neuronal circuit that may be suited to stabilize the internal sky compass in the central complex of the locust
  •  
2.
  • Dircksen, Heinrich, 1954-, et al. (författare)
  • Crustacean Cardioactive Peptide-immunoreactive neurons innervating brain neuropils, retrocerebral complex and stomatogastric nervous-system of the locust, Locusta migratoria
  • 1995
  • Ingår i: Cell and Tissue Research. - 0302-766X .- 1432-0878. ; 279, s. 495-515
  • Tidskriftsartikel (refereegranskat)abstract
    • The distribution and morphology of crustacean cardioactive peptide-immunoreactive neurons in the brain of the locust Locusta migratoria has been determined. Of more than 500 immunoreactive neurons in total, about 380 are interneurons in the optic lobes. These neurons invade several layers of the medulla and distal parts of the lobula. In addition, a small group of neurons projects into the accessory medulla, the lamina, and to several areas in the median protocerebrum. In the midbrain, 12 groups or individual neurons have been reconstructed. Four groups innervate areas of the superior lateral and ventral lateral protocerebrum and the lateral horn. Two cell groups have bilateral arborizations anterior and posterior to the central body or in the superior median protocerebrum. Ramifications in subunits of the central body and in the lateral and the median accessory lobes arise from four additional cell groups. Two local interneurons innervate the antennal lobe. A tritocerebral cell projects contralaterally into the frontal ganglion and appears to give rise to fibers in the recurrent nerve, and in the hypocerebral and ingluvial ganglia. Varicose fibers in the nervi corporis cardiaci III and the corpora cardiaca, and terminals on pharyngeal dilator muscles arise from two subesophageal neurons. Some of the locust neurons closely resemble immunopositive neurons in a beetle and a moth. Our results suggest that the peptide may be (1) a modulatory substance produced by many brain interneurons, and (2) a neurohormone released from subesophageal neurosecretory cells.
  •  
3.
  • el Jundi, Basil, et al. (författare)
  • Integration of polarization and chromatic cues in the insect sky compass.
  • 2014
  • Ingår i: Journal of Comparative Physiology A. - : Springer Science and Business Media LLC. - 1432-1351 .- 0340-7594. ; 200:6, s. 575-589
  • Forskningsöversikt (refereegranskat)abstract
    • Animals relying on a celestial compass for spatial orientation may use the position of the sun, the chromatic or intensity gradient of the sky, the polarization pattern of the sky, or a combination of these cues as compass signals. Behavioral experiments in bees and ants, indeed, showed that direct sunlight and sky polarization play a role in sky compass orientation, but the relative importance of these cues are species-specific. Intracellular recordings from polarization-sensitive interneurons in the desert locust and monarch butterfly suggest that inputs from different eye regions, including polarized-light input through the dorsal rim area of the eye and chromatic/intensity gradient input from the main eye, are combined at the level of the medulla to create a robust compass signal. Conflicting input from the polarization and chromatic/intensity channel, resulting from eccentric receptive fields, is eliminated at the level of the anterior optic tubercle and central complex through internal compensation for changing solar elevations, which requires input from a circadian clock. Across several species, the central complex likely serves as an internal sky compass, combining E-vector information with other celestial cues. Descending neurons, likewise, respond both to zenithal polarization and to unpolarized cues in an azimuth-dependent way.
  •  
4.
  • Heinze, Stanley, et al. (författare)
  • A unified platform to manage, share, and archive morphological and functional data in insect neuroscience
  • 2021
  • Ingår i: eLife. - 2050-084X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Insect neuroscience generates vast amounts of highly diverse data, of which only a small fraction are findable, accessible and reusable. To promote an open data culture, we have therefore developed the InsectBrainDatabase (IBdb), a free online platform for insect neuroanatomical and functional data. The IBdb facilitates biological insight by enabling effective cross-species comparisons, by linking neural structure with function, and by serving as general information hub for insect neuroscience. The IBdb allows users to not only effectively locate and visualize data, but to make them widely available for easy, automated reuse via an application programming interface. A unique private mode of the database expands the IBdb functionality beyond public data deposition, additionally providing the means for managing, visualizing, and sharing of unpublished data. This dual function creates an incentive for data contribution early in data management workflows and eliminates the additional effort normally associated with publicly depositing research data.
  •  
5.
  • Hofer, Sabine, et al. (författare)
  • Novel insect orcokinins : characterization and neuronal distribution in the brains of selected dicondylian insects.
  • 2005
  • Ingår i: Journal of Comparative Neurology. - : Wiley. - 0021-9967 .- 1096-9861. ; 490:1, s. 57-71
  • Tidskriftsartikel (refereegranskat)abstract
    • Orcokinins are a family of myotropic neuropeptides identified in various decapod crustaceans and recently in a cockroach. Their presence in the crustacean nervous system and hemolymph suggests that they act as hormones and as locally acting neuromodulators. To provide further evidence for the existence of orcokinins in insects, we identified a novel orcokinin-related peptide in the locust Schistocerca gregaria and used an antiserum against Asn13-orcokinin for immunostaining in the brains of selected dicondylian insects, including a silverfish, three polyneopteran species (a cockroach and two locusts), and three endopterygote species (a moth, a bee, and a fly). As analyzed by MALDI-TOF spectrometry and nanoelectrospray Q-TOF, the locust orcokinin is a novel tetradecapeptide with striking sequence similarity to crustacean orcokinins. Orcokinin immunostaining was widespread and occurred in similar patterns in the brain of the silverfish and the polyneopteran species. Prominent immunostaining was detected in the optic lobe, especially in the medulla and in the accessory medulla, in local interneurons of the antennal lobe, and in extrinsic and intrinsic mushroom-body neurons. All parts of the central complex and many other areas of the brains were densely stained. In the silverfish, the cockroach, and the locusts, processes in the corpora cardiaca showed orcokinin immunoreactivity, suggesting that orcokinins also serve a hormonal role. In contrast to the case in polyneopteran species, immunostaining was completely lacking in the brains of the honeybee, fruitfly, and sphinx moth. This indicates that orcokinins either are modified considerably or may be completely absent in the brains of endopterygote insects.
  •  
6.
  • Homberg, Uwe, et al. (författare)
  • Comparative anatomy of pigment-dispersing hormone-immunoreactive neurons in the brain of orthopteroid insects
  • 1991
  • Ingår i: Cell and Tissue Research. - : Springer. - 0302-766X .- 1432-0878. ; 266:2, s. 343-357
  • Tidskriftsartikel (refereegranskat)abstract
    • In a comparative study, the anatomy of neurons immunoreactive with an antiserum against the crustacean beta-pigment-dispersing hormone was investigated in the brain of several orthopteroid insects including locusts, crickets, a cockroach, and a phasmid. In all species studied, three groups of neurons with somata in the optic lobes show pigment-dispersing hormone-like immunoreactivity. Additionally, in most species, the tritocerebrum exhibits weak immunoreactive staining originating from ascending fibers, tritocerebral cells, or neurons in the inferior protocerebrum. Two of the three cell groups in the optic lobe have somata at the dorsal and ventral posterior edge of the lamina. These neurons have dense ramifications in the lamina with processes extending into the first optic chiasma and into distal layers of the medulla. Pigment-dispersing hormone-immunoreactive neurons of the third group have somata near the anterior proximal margin of the medulla. These neurons were reconstructed in Schistocerca gregaria, Locusta migratoria, Teleogryllus commodus, Periplaneta americana, and Extatosoma tiaratum. The neurons have wide and divergent arborizations in the medulla, in the lamina, and in several regions of the midbrain, including the superior and inferior lateral protocerebrum and areas between the pedunculi and alpha-lobes of the mushroom bodies. Species-specific differences were found in this third cell group with regard to the number of immunoreactive cells, midbrain arborizations, and contralateral projections, which are especially prominent in the cockroach and virtually absent in crickets. The unusual branching patterns and the special neurochemical phenotype suggest a particular physiological role of these neurons. Their possible function as circadian pacemakers is discussed.
  •  
7.
  • Homberg, Uwe, et al. (författare)
  • Orcokinin in the central complex of the locust Schistocerca gregaria : Identification of immunostained neurons and colocalization with other neuroactive substances
  • 2021
  • Ingår i: Journal of Comparative Neurology. - : Wiley. - 0021-9967 .- 1096-9861. ; 529:8, s. 1876-1894
  • Tidskriftsartikel (refereegranskat)abstract
    • The central complex is a group of highly interconnected neuropils in the insect brain. It is involved in the control of spatial orientation, based on external compass cues and various internal needs. The functional and neurochemical organization of the central complex has been studied in detail in the desert locust Schistocerca gregaria. In addition to classical neurotransmitters, immunocytochemistry has provided evidence for a major contribution of neuropeptides to neural signalling within the central complex. To complement these data, we have identified all orcokinin‐immunoreactive neurons in the locust central complex and associated brain areas. About 50 bilateral pairs of neurons innervating all substructures of the central complex exhibit orcokinin immunoreactivity. Among these were about 20 columnar neurons, 33 bilateral pairs of tangential neurons of the central body, and seven pairs of tangential neurons of the protocerebral bridge. In silico transcript analysis suggests the presence of eight different orcokinin‐A type peptides in the desert locust. Double label experiments showed that all orcokinin‐immunostained tangential neurons of the lateral accessory lobe cluster were also immunoreactive for GABA and the GABA‐synthesizing enzyme glutamic acid decarboxylase. Two types of tangential neurons of the upper division of the central body were, furthermore, also labeled with an antiserum against Dip‐allatostatin I. No colocalization was found with serotonin immunostaining. The data provide additional insights into the neurochemical organization of the locust central complex and suggest that orcokinin‐peptides of the orcokinin‐A gene act as neuroactive substances at all stages of signal processing in this brain area.
  •  
8.
  •  
9.
  • Zupanc, Günther K.H., et al. (författare)
  • Contact chemoreception, magnetic maps, thermoregulation by a superorganism, and, thanks to Einstein, an all-time record : the Editors’ and Readers’ Choice Awards 2023
  • 2023
  • Ingår i: Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology. - : Springer Science and Business Media LLC. - 0340-7594. ; 209:3, s. 337-340
  • Tidskriftsartikel (refereegranskat)abstract
    • During the 99 years of its history, the Journal of Comparative Physiology A has published many of the most influential papers in comparative physiology and related disciplines. To celebrate this achievement of the journal’s authors, annual Editors’ Choice Awards and Readers’ Choice Awards are presented. The winners of the 2023 Editors’ Choice Awards are ‘Contact chemoreception in multi‑modal sensing of prey by Octopus’ by Buresch et al. (J Comp Physiol A 208:435–442, 2022) in the Original Paper category; and ‘Magnetic maps in animal navigation’ by Lohmann et al. (J Comp Physiol A 208:41–67, 2022) in the Review/Review-History Article category. The winners of the 2023 Readers’ Choice Awards are ‘Coping with the cold and fighting the heat: thermal homeostasis of a superorganism, the honeybee colony’ by Stabentheiner et al. (J Comp Physiol A 207:337–351; 2021) in the Original Paper category; and ‘Einstein, von Frisch and the honeybee: a historical letter comes to light’ by Dyer et al. (J Comp Physiol A 207:449–456, 2021) in the Review/Review-History category.
  •  
10.
  • Zupanc, Günther K.H., et al. (författare)
  • It’s all about seeing and hearing : the Editors’ and Readers’ Choice Awards 2022
  • 2022
  • Ingår i: Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology. - : Springer Science and Business Media LLC. - 0340-7594. ; 208:3, s. 351-353
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • This year marks the inauguration of the annual Editors’ Choice Award and the Readers’ Choice Award, each presented for outstanding original papers and review articles published in the Journal of Comparative Physiology A. The winners of the 2022 Editors’ Choice Award were determined by vote of the Editorial Board for the most highly recommended papers published in Volume 207 in 2021. They are ‘Visual discrimination and resolution in freshwater stingrays (Potamotrygon motoro)’ by Daniel et al. (J Comp Physiol A 207, 43–58, 2021) in the Original Paper category; and ‘Neurophysiology goes wild: from exploring sensory coding in sound proof rooms to natural environments’ by Römer (J Comp Physiol A 207, 303–319, 2021) in the Review Article category. The 2022 Readers’ Choice Award was based on access number of articles published in Volume 206 in 2020, to ensure at least 12-month online presence. It is given to Nicholas et al. for their original paper titled ‘Visual motion sensitivity in descending neurons in the hoverfly’ (J Comp Physiol A 206, 149–163, 2020); and to Schnaitmann et al. for their review article entitled ‘Color vision in insects: insights from Drosophila’ (J Comp Physiol A 206, 183–198, 2020).
  •  
11.
  • Zupanc, Günther K.H., et al. (författare)
  • One hundred years of excellence : the top one hundred authors of the Journal of Comparative Physiology A
  • 2024
  • Ingår i: Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology. - 0340-7594. ; 210:2, s. 109-144
  • Forskningsöversikt (refereegranskat)abstract
    • The Journal of Comparative Physiology A is the premier peer-reviewed scientific journal in comparative physiology, in particular sensory physiology, neurophysiology, and neuroethology. Founded in 1924 by Karl von Frisch and Alfred Kühn, it celebrates its 100th anniversary in 2024. During these 100 years, many of the landmark achievements in these disciplines were published in this journal. To commemorate these accomplishments, we have compiled a list of the Top 100 Authors over these 100 years, representing approximately 1% of all its authors. To select these individuals, three performance criteria were applied: number of publications, total number of citations attracted by these articles, and mean citation rate of the papers published by each author. The resulting list of the Top 100 Authors provides a fascinating insight into the history of the disciplines covered by the Journal of Comparative Physiology A and into the academic careers of many of their leading representatives.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-11 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy