SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Homeyer André) "

Sökning: WFRF:(Homeyer André)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hoefener, Henning, et al. (författare)
  • Deep learning nuclei detection: A simple approach can deliver state-of-the-art results
  • 2018
  • Ingår i: Computerized Medical Imaging and Graphics. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0895-6111 .- 1879-0771. ; 70, s. 43-52
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Deep convolutional neural networks have become a widespread tool for the detection of nuclei in histopathology images. Many implementations share a basic approach that includes generation of an intermediate map indicating the presence of a nucleus center, which we refer to as PMap. Nevertheless, these implementations often still differ in several parameters, resulting in different detection qualities. Methods: We identified several essential parameters and configured the basic PMap approach using combinations of them. We thoroughly evaluated and compared various configurations on multiple datasets with respect to detection quality, efficiency and training effort. Results: Post-processing of the PMap was found to have the largest impact on detection quality. Also, two different network architectures were identified that improve either detection quality or runtime performance. The best-performing configuration yields f1-measures of 0.816 on Hamp;E stained images of colorectal adenocarcinomas and 0.819 on Ki-67 stained images of breast tumor tissue. On average, it was fully trained in less than 15,000 iterations and processed 4.15 megapixels per second at prediction time. Conclusions: The basic PMap approach is greatly affected by certain parameters. Our evaluation provides guidance on their impact and best settings. When configured properly, this simple and efficient approach can yield equal detection quality as more complex and time-consuming state-of-the-art approaches. (C) 2018 The Authors. Published by Elsevier Ltd.
  •  
2.
  • Homeyer, Andre, et al. (författare)
  • Automated quantification of steatosis: agreement with stereological point counting
  • 2017
  • Ingår i: Diagnostic Pathology. - : BIOMED CENTRAL LTD. - 1746-1596. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Steatosis is routinely assessed histologically in clinical practice and research. Automated image analysis can reduce the effort of quantifying steatosis. Since reproducibility is essential for practical use, we have evaluated different analysis methods in terms of their agreement with stereological point counting (SPC) performed by a hepatologist. Methods: The evaluation was based on a large and representative data set of 970 histological images from human patients with different liver diseases. Three of the evaluated methods were built on previously published approaches. One method incorporated a new approach to improve the robustness to image variability. Results: The new method showed the strongest agreement with the expert. At 20x resolution, it reproduced steatosis area fractions with a mean absolute error of 0.011 for absent or mild steatosis and 0.036 for moderate or severe steatosis. At 10x resolution, it was more accurate than and twice as fast as all other methods at 20x resolution. When compared with SPC performed by two additional human observers, its error was substantially lower than one and only slightly above the other observer. Conclusions: The results suggest that the new method can be a suitable automated replacement for SPC. Before further improvements can be verified, it is necessary to thoroughly assess the variability of SPC between human observers.
  •  
3.
  • Kost, Henning, et al. (författare)
  • Training nuclei detection algorithms with simple annotations
  • 2017
  • Ingår i: Journal of Pathology Informatics. - : Elsevier BV. - 2229-5089 .- 2153-3539. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Generating good training datasets is essential for machine learning-based nuclei detection methods. However, creating exhaustive nuclei contour annotations, to derive optimal training data from, is often infeasible. Methods: We compared different approaches for training nuclei detection methods solely based on nucleus center markers. Such markers contain less accurate information, especially with regard to nuclear boundaries, but can be produced much easier and in greater quantities. The approaches use different automated sample extraction methods to derive image positions and class labels from nucleus center markers. In addition, the approaches use different automated sample selection methods to improve the detection quality of the classification algorithm and reduce the run time of the training process. We evaluated the approaches based on a previously published generic nuclei detection algorithm and a set of Ki-67-stained breast cancer images. Results: A Voronoi tessellation-based sample extraction method produced the best performing training sets. However, subsampling of the extracted training samples was crucial. Even simple class balancing improved the detection quality considerably. The incorporation of active learning led to a further increase in detection quality. Conclusions: With appropriate sample extraction and selection methods, nuclei detection algorithms trained on the basis of simple center marker annotations can produce comparable quality to algorithms trained on conventionally created training sets.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy