SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(House Robert A.) "

Sökning: WFRF:(House Robert A.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • House, Robert A., et al. (författare)
  • Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes
  • 2020
  • Ingår i: Nature. - : NATURE PUBLISHING GROUP. - 0028-0836 .- 1476-4687. ; 577:7791, s. 502-508
  • Tidskriftsartikel (refereegranskat)abstract
    • In conventional intercalation cathodes, alkali metal ions can move in and out of a layered material with the charge being compensated for by reversible reduction and oxidation of the transition metal ions. If the cathode material used in a lithium-ion or sodium-ion battery is alkali-rich, this can increase the battery's energy density by storing charge on the oxide and the transition metal ions, rather than on the transition metal alone(1-10). There is a high voltage associated with oxidation of O2- during the first charge, but this is not recovered on discharge, resulting in reduced energy density(11). Displacement of transition metal ions into the alkali metal layers has been proposed to explain the first-cycle voltage loss (hysteresis)(9,12-16). By comparing two closely related intercalation cathodes, Na-0.75[Li0.25Mn0.75]O-2 and Na-0.6[Li0.2Mn0.8]O-2, here we show that the first-cycle voltage hysteresis is determined by the superstructure in the cathode, specifically the local ordering of lithium and transition metal ions in the transition metal layers. The honeycomb superstructure of Na-0.75[Li0.25Mn0.75]O-2, present in almost all oxygen-redox compounds, is lost on charging, driven in part by formation of molecular O-2 inside the solid. The O-2 molecules are cleaved on discharge, reforming O2-, but the manganese ions have migrated within the plane, changing the coordination around O2- and lowering the voltage on discharge. The ribbon superstructure in Na-0.6[Li0.2Mn0.8]O-2 inhibits manganese disorder and hence O-2 formation, suppressing hysteresis and promoting stable electron holes on O2- that are revealed by X-ray absorption spectroscopy. The results show that voltage hysteresis can be avoided in oxygen-redox cathodes by forming materials with a ribbon superstructure in the transition metal layers that suppresses migration of the transition metal. In oxygen-redox intercalation cathodes, voltage hysteresis can be avoided by forming cathode materials with a 'ribbon' superstructure in the transition metal layers that suppresses transition metal migration.
  •  
2.
  • Eneslätt, Kjell, et al. (författare)
  • Persistence of cell-mediated immunity three decades after vaccination with the live vaccine strain of Francisella tularensis
  • 2011
  • Ingår i: European Journal of Immunology. - Weinheim : Wiley-VCH Verlagsgesellschaft. - 0014-2980 .- 1521-4141. ; 41:4, s. 974-980
  • Tidskriftsartikel (refereegranskat)abstract
    • The efficacy of many vaccines against intracellular bacteria depends on the generation of cell-mediated immunity, but studies to determine the duration of immunity are usually confounded by re-exposure. The causative agent of tularemia, Francisella tularensis, is rare in most areas and, therefore, tularemia vaccination is an interesting model for studies of the longevity of vaccine-induced cell-mediated immunity. Here, lymphocyte proliferation and cytokine production in response to F. tularensis were assayed in two groups of 16 individuals, vaccinated 1-3 or 27-34 years previously. As compared to naïve individuals, vaccinees of both groups showed higher proliferative responses and, out of 17 cytokines assayed, higher levels of MIP-1β, IFN-γ, IL-10, and IL-5 in response to recall stimulation. The responses were very similar in the two groups of vaccinees. A statistical model was developed to predict the immune status of the individuals and by use of two parameters, proliferative responses and levels of IFN-γ, 91.1% of the individuals were correctly classified. Using flow cytometry analysis, we demonstrated that during recall stimulation, expression of IFN-γ by CD4(+) CCR7(+) , CD4(+) CD62L(+) , CD8(+) CCR7(+) , and CD8(+) CD62L(+) cells significantly increased in samples from vaccinated donors. In conclusion, cell-mediated immunity was found to persist three decades after tularemia vaccination without evidence of decline.
  •  
3.
  • Fulton, Kelly M., et al. (författare)
  • Immunoproteomic analysis of the human antibody response to natural tularemia infection with Type A or Type B strains or LVS vaccination
  • 2011
  • Ingår i: International Journal of Medical Microbiology. - : Elsevier BV. - 1438-4221 .- 1618-0607. ; 301:7, s. 591-601
  • Tidskriftsartikel (refereegranskat)abstract
    • Francisella tularensis is pathogenic for many mammalian species including humans, causing a spectrum of diseases called tularemia. The highly virulent Type A strains have associated mortality rates of up to 60% if inhaled. An attenuated live vaccine strain (LVS) is the only vaccine to show efficacy in humans, but suffers several barriers to licensure, including the absence of a correlate of protection. An immunoproteomics approach was used to survey the repertoire of antibodies in sera from individuals who had contracted tularemia during two outbreaks and individuals from two geographical areas who had been vaccinated with NDBR Lot 11 or Lot 17 LVS. These data showed a large overlap in the antibodies generated in response to tularemia infection or LVS vaccination. A total of seven proteins were observed to be reactive with 60% or more sera from vaccinees and convalescents. A further four proteins were recognised by 30-60% of the sera screened. These proteins have the potential to serve as markers of vaccination or candidates for subunit vaccines. Crown Copyright (C) 2011 Published by Elsevier GmbH. All rights reserved.
  •  
4.
  • Hirsbrunner, Moritz, et al. (författare)
  • Vibrationally-resolved RIXS reveals OH-group formation in oxygen redox active Li-ion battery cathodes
  • 2024
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry. - 1463-9076 .- 1463-9084. ; 26:28, s. 19460-19468
  • Tidskriftsartikel (refereegranskat)abstract
    • Vibrationally-resolved resonant inelastic X-ray scattering (VR-RIXS) at the O K-edge is emerging as a powerful tool for identifying embedded molecules in lithium-ion battery cathodes. Here, we investigate two known oxygen redox-active cathode materials: the commercial LixNi0.90Co0.05Al0.05O2 (NCA) used in electric vehicles and the high-capacity cathode material Li1.2Ni0.13Co0.13Mn0.54O2 (LRNMC) for next-generation Li-ion batteries. We report the detection of a novel vibrational RIXS signature for Li-ion battery cathodes appearing in the O K pre-peak above 533 eV that we attribute to OH-groups. We discuss likely locations and pathways for OH-group formation and accumulation throughout the active cathode material. Initial-cycle behaviour for LRNMC shows that OH-signal strength correlates with the cathodes state of charge, though reversibility is incomplete. The OH-group RIXS signal strength in long-term cycled NCA is retained. Thus, VR-RIXS offers a path for gaining new insights to oxygen reactions in battery materials.
  •  
5.
  • House, Robert A., et al. (författare)
  • Lithium manganese oxyfluoride as a new cathode material exhibiting oxygen redox
  • 2018
  • Ingår i: Energy & Environmental Science. - : Royal Society of Chemistry (RSC). - 1754-5692 .- 1754-5706. ; 11:4, s. 926-932
  • Tidskriftsartikel (refereegranskat)abstract
    • The quantity of charge stored in transition metal oxide intercalation cathodes for Li or Na batteries is not limited by transition metal redox reactions but can also access redox reactions on O; examples include Li1.2Ni0.13Mn0.54Co0.13O2, Li2Ru0.75Sn0.25O3, Li1.2Nb0.3Mn0.4O2, Na2RuO3 and Na2/3Mg0.28Mn0.72O2. Here we show that oxyfluorides can also exhibit charge storage by O-redox. We report the discovery of lithium manganese oxyfluoride, specifically the composition, Li1.9Mn0.95O2.05F0.95, with a high capacity to store charge of 280 mA h g(-1) (corresponding to 960 W h kg(-1)) of which almost half, 130 mA h g(-1), arises from O-redox. This material has a disordered cubic rocksalt structure and the voltage-composition curve is significantly more reversible compared with ordered Li-rich layered cathodes. Unlike lithium manganese oxides such as the ordered layered rocksalt Li2MnO3, Li1.9Mn0.95O2.05F0.95 does not exhibit O loss from the lattice. The material is synthesised using a simple, one-pot mechanochemical procedure.
  •  
6.
  • House, Robert A., et al. (författare)
  • What Triggers Oxygen Loss in Oxygen Redox Cathode Materials?
  • 2019
  • Ingår i: Chemistry of Materials. - : AMER CHEMICAL SOC. - 0897-4756 .- 1520-5002. ; 31:9, s. 3293-3300
  • Tidskriftsartikel (refereegranskat)abstract
    • It is possible to increase the charge capacity of transition metal (TM) oxide cathodes in alkali-ion batteries by invoking redox reactions on the oxygen. However, oxygen loss often occurs. To explore what affects oxygen loss in oxygen redox materials, we have compared two analogous Na-ion cathodes, P2-Na0.67Mg0.28Mn0.72O2 and P2-Na0.78Li0.25Mn0.75O2. On charging to 4.5 V, >0.4e(-) are removed from the oxide ions of these materials, but neither compound exhibits oxygen loss. Li is retained in P2-Na0.78Li0.25Mn0.25O2 but displaced from the TM to the alkali metal layers, showing that vacancies in the TM layers, which also occur in other oxygen redox compounds that exhibit oxygen loss such as Li[Li0.2Ni0.2Mn0.6]O-2, are not a trigger for oxygen loss. On charging at 5 V, P2-Na0.78Li0.25Mn0.75O2 exhibits oxygen loss, whereas P2-Na0.67Mg0.28Mn0.72O2 does not. Under these conditions, both Na+ and Li+ are removed from P2-Na0.78Li0.25Mn0.75O2, resulting in underbonded oxygen (fewer than 3 cations coordinating oxygen) and surface-localized O loss. In contrast, for P2-Na0.67Mg0.28Mn0.72O2, oxygen remains coordinated by at least 2 Mn4+ and 1 Mg2+ ions, stabilizing the oxygen and avoiding oxygen loss.
  •  
7.
  • Somerville, James W., et al. (författare)
  • Nature of the "Z"-phase in layered Na-ion battery cathodes
  • 2019
  • Ingår i: Energy & Environmental Science. - : ROYAL SOC CHEMISTRY. - 1754-5692 .- 1754-5706. ; 12:7, s. 2223-2232
  • Tidskriftsartikel (refereegranskat)abstract
    • Layered sodium transition metal oxides with the P2 structure, e.g. Na-2/3[Ni1/3Mn2/3]O-2, are regarded as candidates for Na-ion battery cathodes. On charging, extraction of Na destabilizes the P2 phase (ABBA oxide ion stacking) in which Na+ is in trigonal prismatic coordination, resulting in layer gliding and formation of an O2 phase (ABAC stacking) with octahedral coordination. However, many related compounds do not exhibit such a simple P2 to O2 transition but rather form a so called Z-phase. Substituting Ni by Fe in Na-2/3[Ni1/3Mn2/3]O-2 is attractive as it reduces cost. The Fe containing compounds, such as Na-2/3[Ni1/6Mn1/2Fe1/3]O-2, form a Z-phase when charged above 4.1 V vs. Na+/Na. By combining ex situ and operando X-ray diffraction with scanning transmission electron microscopy and simulated diffraction patterns, we demonstrate that the Z-phase is most accurately described as a continuously changing intergrowth structure which evolves from P2 to O2 through the OP4 structure as an intermediate. On charging, Na+ removal results in O-type stacking faults within the P2 structure which increase in proportion. At 50% O-type stacking faults, the ordered OP4 phase forms and on further charging more O-type stacking faults are formed progressing towards a pure O2 structure. This gives the superficial appearance of a solid solution. Furthermore, in contrast to some previous studies, we did not detect Fe migration at any state-of-charge using Fe-57-Mossbauer spectroscopy. It was, however, found that the Fe-substitution serves to disrupt cation ordering in the material.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy