SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Houweling Sander) "

Sökning: WFRF:(Houweling Sander)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Berchet, Antoine, et al. (författare)
  • The Community Inversion Framework v1.0 : A unified system for atmospheric inversion studies
  • 2021
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 14:8, s. 5331-5354
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric inversion approaches are expected to play a critical role in future observation-based monitoring systems for surface fluxes of greenhouse gases (GHGs), pollutants and other trace gases. In the past decade, the research community has developed various inversion software, mainly using variational or ensemble Bayesian optimization methods, with various assumptions on uncertainty structures and prior information and with various atmospheric chemistry-Transport models. Each of them can assimilate some or all of the available observation streams for its domain area of interest: flask samples, in situ measurements or satellite observations. Although referenced in peer-reviewed publications and usually accessible across the research community, most systems are not at the level of transparency, flexibility and accessibility needed to provide the scientific community and policy makers with a comprehensive and robust view of the uncertainties associated with the inverse estimation of GHG and reactive species fluxes. Furthermore, their development, usually carried out by individual research institutes, may in the future not keep pace with the increasing scientific needs and technical possibilities. We present here the Community Inversion Framework (CIF) to help rationalize development efforts and leverage the strengths of individual inversion systems into a comprehensive framework. The CIF is primarily a programming protocol to allow various inversion bricks to be exchanged among researchers. In practice, the ensemble of bricks makes a flexible, transparent and open-source Python-based tool to estimate the fluxes of various GHGs and reactive species both at the global and regional scales. It will allow for running different atmospheric transport models, different observation streams and different data assimilation approaches. This adaptability will allow for a comprehensive assessment of uncertainty in a fully consistent framework. We present here the main structure and functionalities of the system, and we demonstrate how it operates in a simple academic case.
  •  
2.
  • Ehret, Gerhard, et al. (författare)
  • MERLIN : A French-German space lidar mission dedicated to atmospheric methane
  • 2017
  • Ingår i: Remote Sensing. - : MDPI AG. - 2072-4292. ; 9:10
  • Forskningsöversikt (refereegranskat)abstract
    • The MEthane Remote sensing Lidar missioN (MERLIN) aims at demonstrating the spaceborne active measurement of atmospheric methane, a potent greenhouse gas, based on an Integrated Path Differential Absorption (IPDA) nadir-viewing LIght Detecting and Ranging (Lidar) instrument. MERLIN is a joint French and German space mission, with a launch currently scheduled for the timeframe 2021/22. The German Space Agency (DLR) is responsible for the payload, while the platform (MYRIADE Evolutions product line) is developed by the French Space Agency (CNES). The main scientific objective of MERLIN is the delivery of weighted atmospheric columns of methane dry-air mole fractions for all latitudes throughout the year with systematic errors small enough (< 3.7 ppb) to significantly improve our knowledge of methane sources from global to regional scales, with emphasis on poorly accessible regions in the tropics and at high latitudes. This paper presents the MERLIN objectives, describes the methodology and the main characteristics of the payload and of the platform, and proposes a first assessment of the error budget and its translation into expected uncertainty reduction of methane surface emissions.
  •  
3.
  • Kaminski, Thomas, et al. (författare)
  • Assessing the constraint of atmospheric CO2 and NO2 measurements from space on city-scale fossil fuel CO2 emissions in a data assimilation system
  • 2022
  • Ingår i: Frontiers in Remote Sensing. - : Frontiers Media SA. - 2673-6187. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • The European Copernicus programme plans to install a constellation of multiple polar orbiting satellites (Copernicus Anthropogenic CO2 Monitoring Mission, CO2M mission) for observing atmospheric CO2 content with the aim to estimate fossil fuel CO2 emissions. We explore the impact of potential CO2M observations of column-averaged CO2 (XCO2), nitrogen dioxide (NO2), and aerosols in a 200 × 200 km2 domain around Berlin. For the quantification of anticipated XCO2 random and systematic errors we developed and applied new error parameterisation formulae based on artificial neural networks. For the interpretation of these data, we further established a CCFFDAS modelling chain from parameters of emission models to XCO2 and NO2 observations to simulate the 24 h periods preceeding simulated CO2M overpasses over the study area. For one overpass in winter and one in summer, we present a number of assessments of observation impact in terms of the posterior uncertainty in fossil fuel emissions on scales ranging from 2 to 200 km. This means the assessments include temporal and spatial scales typically not covered by inventories. The assessments differentiate the fossil fuel CO2 emissions into two sectors, an energy generation sector (power plants) and the complement, which we call “other sector.” We find that combined measurements of XCO2 and aerosols provide a powerful constraint on emissions from larger power plants; the uncertainty in fossil fuel emissions from the largest three power plants in the domain was reduced by 60%–90% after assimilating the observations. Likewise, these measurements achieve an uncertainty reduction for the other sector that increases when aggregated to larger spatial scales. When aggregated over Berlin the uncertainty reduction for the other sector varies between 28% and 48%. Our assessments show a considerable contribution of aerosol observations onboard CO2M to the constraint of the XCO2 measurements on emissions from all power plants and for the other sector on all spatial scales. NO2 measurements onboard CO2M provide a powerful additional constraint on the emissions from power plants and from the other sector. We further apply a Jacobian representation of the CCFFDAS modelling chain to decompose a simulated CO2 column in terms of spatial emission impact. This analysis reveals the complex structure of the footprint of an observed CO2 column, which indicates the limits of simple mass balances approaches for interpretation of such observations.
  •  
4.
  • Kaminski, Thomas, et al. (författare)
  • Assessing the Impact of Atmospheric CO2 and NO2 Measurements From Space on Estimating City-Scale Fossil Fuel CO2 Emissions in a Data Assimilation System
  • 2022
  • Ingår i: Frontiers in Remote Sensing. - : Frontiers Media SA. - 2673-6187. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • The European Copernicus programme plans to install a constellation of multiple polar orbiting satellites (Copernicus Anthropogenic CO2 Monitoring Mission, CO2M mission) for observing atmospheric CO2 content with the aim to estimate fossil fuel CO2 emissions. We explore the impact of potential CO2M observations of column-averaged CO2 (XCO2), nitrogen dioxide (NO2), and aerosols in a 200 × 200 km2 domain around Berlin. For the quantification of anticipated XCO2 random and systematic errors we developed and applied new error parameterisation formulae based on artificial neural networks. For the interpretation of these data, we further established a CCFFDAS modelling chain from parameters of emission models to XCO2 and NO2 observations to simulate the 24 h periods preceeding simulated CO2M overpasses over the study area. For one overpass in winter and one in summer, we present a number of assessments of observation impact in terms of the posterior uncertainty in fossil fuel emissions on scales ranging from 2 to 200 km. This means the assessments include temporal and spatial scales typically not covered by inventories. The assessments differentiate the fossil fuel CO2 emissions into two sectors, an energy generation sector (power plants) and the complement, which we call “other sector.” We find that combined measurements of XCO2 and aerosols provide a powerful constraint on emissions from larger power plants; the uncertainty in fossil fuel emissions from the largest three power plants in the domain was reduced by 60%–90% after assimilating the observations. Likewise, these measurements achieve an uncertainty reduction for the other sector that increases when aggregated to larger spatial scales. When aggregated over Berlin the uncertainty reduction for the other sector varies between 28% and 48%. Our assessments show a considerable contribution of aerosol observations onboard CO2M to the constraint of the XCO2 measurements on emissions from all power plants and for the other sector on all spatial scales. NO2 measurements onboard CO2M provide a powerful additional constraint on the emissions from power plants and from the other sector. We further apply a Jacobian representation of the CCFFDAS modelling chain to decompose a simulated CO2 column in terms of spatial emission impact. This analysis reveals the complex structure of the footprint of an observed CO2 column, which indicates the limits of simple mass balances approaches for interpretation of such observations.
  •  
5.
  • Lauerwald, Ronny, et al. (författare)
  • Carbon and Greenhouse Gas Budgets of Europe : Trends, Interannual and Spatial Variability, and Their Drivers
  • 2024
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236. ; 38:8
  • Tidskriftsartikel (refereegranskat)abstract
    • In the framework of the RECCAP2 initiative, we present the greenhouse gas (GHG) and carbon (C) budget of Europe. For the decade of the 2010s, we present a bottom-up (BU) estimate of GHG net-emissions of 3.9 Pg CO2-eq. yr−1 (using a global warming potential on a 100 years horizon), which are largely dominated by fossil fuel emissions. In this decade, terrestrial ecosystems acted as a net GHG sink of 0.9 Pg CO2-eq. yr−1, dominated by a CO2 sink that was partially counterbalanced by net emissions of CH4 and N2O. For CH4 and N2O, we find good agreement between BU and top-down (TD) estimates from atmospheric inversions. However, our BU land CO2 sink is significantly higher than the TD estimates. We further show that decadal averages of GHG net-emissions have declined by 1.2 Pg CO2-eq. yr−1 since the 1990s, mainly due to a reduction in fossil fuel emissions. In addition, based on both data driven BU and TD estimates, we also find that the land CO2 sink has weakened over the past two decades. A large part of the European CO2 and C sinks is located in Northern Europe. At the same time, we find a decreasing trend in sink strength in Scandinavia, which can be attributed to an increase in forest management intensity. These are partly offset by increasing CO2 sinks in parts of Eastern Europe and Northern Spain, attributed in part to land use change. Extensive regions of high CH4 and N2O emissions are mainly attributed to agricultural activities and are found in Belgium, the Netherlands and the southern UK. We further analyzed interannual variability in the GHG budgets. The drought year of 2003 shows the highest net-emissions of CO2 and of all GHGs combined.
  •  
6.
  • Mastepanov, Mikhail, et al. (författare)
  • Large tundra methane burst during onset of freezing.
  • 2008
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 456:7222, s. 58-628
  • Tidskriftsartikel (refereegranskat)abstract
    • Terrestrial wetland emissions are the largest single source of the greenhouse gas methane. Northern high-latitude wetlands contribute significantly to the overall methane emissions from wetlands, but the relative source distribution between tropical and high-latitude wetlands remains uncertain. As a result, not all the observed spatial and seasonal patterns of atmospheric methane concentrations can be satisfactorily explained, particularly for high northern latitudes. For example, a late-autumn shoulder is consistently observed in the seasonal cycles of atmospheric methane at high-latitude sites, but the sources responsible for these increased methane concentrations remain uncertain. Here we report a data set that extends hourly methane flux measurements from a high Arctic setting into the late autumn and early winter, during the onset of soil freezing. We find that emissions fall to a low steady level after the growing season but then increase significantly during the freeze-in period. The integral of emissions during the freeze-in period is approximately equal to the amount of methane emitted during the entire summer season. Three-dimensional atmospheric chemistry and transport model simulations of global atmospheric methane concentrations indicate that the observed early winter emission burst improves the agreement between the simulated seasonal cycle and atmospheric data from latitudes north of 60 degrees N. Our findings suggest that permafrost-associated freeze-in bursts of methane emissions from tundra regions could be an important and so far unrecognized component of the seasonal distribution of methane emissions from high latitudes.
  •  
7.
  • Pandey, Sudhanshu, et al. (författare)
  • Enhanced methane emissions from tropical wetlands during the 2011 la Niña
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Year-to-year variations in the atmospheric methane (CH4) growth rate show significant correlation with climatic drivers. The second half of 2010 and the first half of 2011 experienced the strongest La Niña since the early 1980s, when global surface networks started monitoring atmospheric CH4 mole fractions. We use these surface measurements, retrievals of column-averaged CH4 mole fractions from GOSAT, new wetland inundation estimates, and atmospheric δ13C-CH4 measurements to estimate the impact of this strong La Niña on the global atmospheric CH4 budget. By performing atmospheric inversions, we find evidence of an increase in tropical CH4 emissions of ∼6-9 TgCH4 yr-1 during this event. Stable isotope data suggest that biogenic sources are the cause of this emission increase. We find a simultaneous expansion of wetland area, driven by the excess precipitation over the Tropical continents during the La Niña. Two process-based wetland models predict increases in wetland area consistent with observationally-constrained values, but substantially smaller per-area CH4 emissions, highlighting the need for improvements in such models. Overall, tropical wetland emissions during the strong La Niña were at least by 5% larger than the long-term mean.
  •  
8.
  • Petrescu, Ana Maria Roxana, et al. (författare)
  • The consolidated European synthesis of CH4 and N2O emissions for the European Union and United Kingdom: 1990-2019
  • 2023
  • Ingår i: Earth System Science Data. - : COPERNICUS GESELLSCHAFT MBH. - 1866-3508 .- 1866-3516. ; 15:3, s. 1197-1268
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge of the spatial distribution of the fluxes of greenhouse gases (GHGs) and their temporal variability as well as flux attribution to natural and anthropogenic processes is essential to monitoring the progress in mitigating anthropogenic emissions under the Paris Agreement and to inform its global stocktake. This study provides a consolidated synthesis of CH4 and N2O emissions using bottom-up (BU) and top-down (TD) approaches for the European Union and UK (EU27 + UK) and updates earlier syntheses (Petrescu et al., 2020, 2021). The work integrates updated emission inventory data, process-based model results, data-driven sector model results and inverse modeling estimates, and it extends the previous period of 1990-2017 to 2019. BU and TD products are compared with European national greenhouse gas inventories (NGHGIs) reported by parties under the United Nations Framework Convention on Climate Change (UNFCCC) in 2021. Uncertainties in NGHGIs, as reported to the UNFCCC by the EU and its member states, are also included in the synthesis. Variations in estimates produced with other methods, such as atmospheric inversion models (TD) or spatially disaggregated inventory datasets (BU), arise from diverse sources including within-model uncertainty related to parameterization as well as structural differences between models. By comparing NGHGIs with other approaches, the activities included are a key source of bias between estimates, e.g., anthropogenic and natural fluxes, which in atmospheric inversions are sensitive to the prior geospatial distribution of emissions. For CH4 emissions, over the updated 2015-2019 period, which covers a sufficiently robust number of overlapping estimates, and most importantly the NGHGIs, the anthropogenic BU approaches are directly comparable, accounting for mean emissions of 20.5 TgCH(4) yr(-1) (EDGARv6.0, last year 2018) and 18.4 TgCH(4) yr(-1) (GAINS, last year 2015), close to the NGHGI estimates of 17 :5 +/- 2 :1 TgCH(4) yr(-1). TD inversion estimates give higher emission estimates, as they also detect natural emissions. Over the same period, high-resolution regional TD inversions report a mean emission of 34 TgCH(4) yr(-1). Coarser-resolution global-scale TD inversions result in emission estimates of 23 and 24 TgCH(4) yr(-1) inferred from GOSAT and surface (SURF) network atmospheric measurements, respectively. The magnitude of natural peatland and mineral soil emissions from the JSBACH-HIMMELI model, natural rivers, lake and reservoir emissions, geological sources, and biomass burning together could account for the gap between NGHGI and inversions and account for 8 TgCH(4) yr(-1). For N2O emissions, over the 2015-2019 period, both BU products (EDGARv6.0 and GAINS) report a mean value of anthropogenic emissions of 0.9 TgN(2)Oyr(-1), close to the NGHGI data (0 :8 +/- 55% TgN(2)Oyr(-1)). Over the same period, the mean of TD global and regional inversions was 1.4 TgN(2)Oyr(-1) (excluding TOMCAT, which reported no data). The TD and BU comparison method defined in this study can be operationalized for future annual updates for the calculation of CH4 and N2O budgets at the national and EU27 C UK scales. Future comparability will be enhanced with further steps involving analysis at finer temporal resolutions and estimation of emissions over intra-annual timescales, which is of great importance for CH4 and N2O, and may help identify sector contributions to divergence between prior and posterior estimates at the annual and/or inter-annual scale. Even if currently comparison between CH4 and N2O inversion estimates and NGHGIs is highly uncertain because of the large spread in the inversion results, TD inversions inferred from atmospheric observations represent the most independent data against which inventory totals can be compared. With anticipated improvements in atmospheric modeling and observations, as well as modeling of natural fluxes, TD inversions may arguably emerge as the most powerful tool for verifying emission inventories for CH4, N2O and other GHGs. The referenced dataset srelated to figures are visualized at https://doi.org/10.5281/zenodo.7553800 (Petrescu et al., 2023).
  •  
9.
  • Röckmann, Thomas, et al. (författare)
  • In situ observations of the isotopic composition of methane at the Cabauw tall tower site
  • 2016
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 16:16, s. 10469-10487
  • Tidskriftsartikel (refereegranskat)abstract
    • High-precision analyses of the isotopic composition of methane in ambient air can potentially be used to discriminate between different source categories. Due to the complexity of isotope ratio measurements, such analyses have generally been performed in the laboratory on air samples collected in the field. This poses a limitation on the temporal resolution at which the isotopic composition can be monitored with reasonable logistical effort. Here we present the performance of a dual isotope ratio mass spectrometric system (IRMS) and a quantum cascade laser absorption spectroscopy (QCLAS)-based technique for in situ analysis of the isotopic composition of methane under field conditions. Both systems were deployed at the Cabauw Experimental Site for Atmospheric Research (CESAR) in the Netherlands and performed in situ, high-frequency (approx. hourly) measurements for a period of more than 5 months. The IRMS and QCLAS instruments were in excellent agreement with a slight systematic offset of (+0.25±0.04)‰ for δ13C and (-4.3±0.4)‰ for δD. This was corrected for, yielding a combined dataset with more than 2500 measurements of both δ13C and δD. The high-precision and hightemporal- resolution dataset not only reveals the overwhelming contribution of isotopically depleted agricultural CH4 emissions from ruminants at the Cabauw site but also allows the identification of specific events with elevated contributions from more enriched sources such as natural gas and landfills. The final dataset was compared to model calculations using the global model TM5 and the mesoscale model FLEXPART-COSMO. The results of both models agree better with the measurements when the TNO-MACC emission inventory is used in the models than when the EDGAR inventory is used. This suggests that high-resolution isotope measurements have the potential to further constrain the methane budget when they are performed at multiple sites that are representative for the entire European domain.
  •  
10.
  • Saunois, Marielle, et al. (författare)
  • The Global Methane Budget 2000–2017
  • 2020
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3516 .- 1866-3508. ; 12:3, s. 1561-1623
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. Atmospheric emissions and concentrations of CH4 continue to increase, making CH4 the second most important human-influenced greenhouse gas in terms of climate forcing, after carbon dioxide (CO2). The relative importance of CH4 compared to CO2 depends on its shorter atmospheric lifetime, stronger warming potential, and variations in atmospheric growth rate over the past decade, the causes of which are still debated. Two major challenges in reducing uncertainties in the atmospheric growth rate arise from the variety of geographically overlapping CH4 sources and from the destruction of CH4 by short-lived hydroxyl radicals (OH). To address these challenges, we have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. Following Saunois et al. (2016), we present here the second version of the living review paper dedicated to the decadal methane budget, integrating results of top-down studies (atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up estimates (including process-based models for estimating land surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations).For the 2008–2017 decade, global methane emissions are estimated by atmospheric inversions (a top-down approach) to be 576 Tg CH4 yr−1 (range 550–594, corresponding to the minimum and maximum estimates of the model ensemble). Of this total, 359 Tg CH4 yr−1 or ∼ 60 % is attributed to anthropogenic sources, that is emissions caused by direct human activity (i.e. anthropogenic emissions; range 336–376 Tg CH4 yr−1 or 50 %–65 %). The mean annual total emission for the new decade (2008–2017) is 29 Tg CH4 yr−1 larger than our estimate for the previous decade (2000–2009), and 24 Tg CH4 yr−1 larger than the one reported in the previous budget for 2003–2012 (Saunois et al., 2016). Since 2012, global CH4 emissions have been tracking the warmest scenarios assessed by the Intergovernmental Panel on Climate Change. Bottom-up methods suggest almost 30 % larger global emissions (737 Tg CH4 yr−1, range 594–881) than top-down inversion methods. Indeed, bottom-up estimates for natural sources such as natural wetlands, other inland water systems, and geological sources are higher than top-down estimates. The atmospheric constraints on the top-down budget suggest that at least some of these bottom-up emissions are overestimated. The latitudinal distribution of atmospheric observation-based emissions indicates a predominance of tropical emissions (∼ 65 % of the global budget, < 30∘ N) compared to mid-latitudes (∼ 30 %, 30–60∘ N) and high northern latitudes (∼ 4 %, 60–90∘ N). The most important source of uncertainty in the methane budget is attributable to natural emissions, especially those from wetlands and other inland waters.Some of our global source estimates are smaller than those in previously published budgets (Saunois et al., 2016; Kirschke et al., 2013). In particular wetland emissions are about 35 Tg CH4 yr−1 lower due to improved partition wetlands and other inland waters. Emissions from geological sources and wild animals are also found to be smaller by 7 Tg CH4 yr−1 by 8 Tg CH4 yr−1, respectively. However, the overall discrepancy between bottom-up and top-down estimates has been reduced by only 5 % compared to Saunois et al. (2016), due to a higher estimate of emissions from inland waters, highlighting the need for more detailed research on emissions factors. Priorities for improving the methane budget include (i) a global, high-resolution map of water-saturated soils and inundated areas emitting methane based on a robust classification of different types of emitting habitats; (ii) further development of process-based models for inland-water emissions; (iii) intensification of methane observations at local scales (e.g., FLUXNET-CH4 measurements) and urban-scale monitoring to constrain bottom-up land surface models, and at regional scales (surface networks and satellites) to constrain atmospheric inversions; (iv) improvements of transport models and the representation of photochemical sinks in top-down inversions; and (v) development of a 3D variational inversion system using isotopic and/or co-emitted species such as ethane to improve source partitioning.The data presented here can be downloaded from https://doi.org/10.18160/GCP-CH4-2019 (Saunois et al., 2020) and from the Global Carbon Project.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy