SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hovig D) "

Search: WFRF:(Hovig D)

  • Result 1-17 of 17
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Menden, MP, et al. (author)
  • Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen
  • 2019
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 2674-
  • Journal article (peer-reviewed)abstract
    • The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca’s large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Dominguez-Valentin, M, et al. (author)
  • No Difference in Penetrance between Truncating and Missense/Aberrant Splicing Pathogenic Variants in MLH1 and MSH2: A Prospective Lynch Syndrome Database Study
  • 2021
  • In: Journal of clinical medicine. - : MDPI AG. - 2077-0383. ; 10:13
  • Journal article (peer-reviewed)abstract
    • Background. Lynch syndrome is the most common genetic predisposition for hereditary cancer. Carriers of pathogenic changes in mismatch repair (MMR) genes have an increased risk of developing colorectal (CRC), endometrial, ovarian, urinary tract, prostate, and other cancers, depending on which gene is malfunctioning. In Lynch syndrome, differences in cancer incidence (penetrance) according to the gene involved have led to the stratification of cancer surveillance. By contrast, any differences in penetrance determined by the type of pathogenic variant remain unknown. Objective. To determine cumulative incidences of cancer in carriers of truncating and missense or aberrant splicing pathogenic variants of the MLH1 and MSH2 genes. Methods. Carriers of pathogenic variants of MLH1 (path_MLH1) and MSH2 (path_MSH2) genes filed in the Prospective Lynch Syndrome Database (PLSD) were categorized as truncating or missense/aberrant splicing according to the InSiGHT criteria for pathogenicity. Results. Among 5199 carriers, 1045 had missense or aberrant splicing variants, and 3930 had truncating variants. Prospective observation years for the two groups were 8205 and 34,141 years, respectively, after which there were no significant differences in incidences for cancer overall or for colorectal cancer or endometrial cancers separately. Conclusion. Truncating and missense or aberrant splicing pathogenic variants were associated with similar average cumulative incidences of cancer in carriers of path MLH1 and path_MSH2.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  • Benson, Mikael, 1954, et al. (author)
  • Connectivity can be used to identify key genes in DNA microarray data: a study based on gene expression in nasal polyps before and after treatment with glucocorticoids
  • 2007
  • In: Acta Oto-Laryngologica. - : Informa UK Limited. - 1651-2251 .- 0001-6489. ; 127:10, s. 1074-1079
  • Journal article (peer-reviewed)abstract
    • Conclusions. The presented analysis of nasal polyposis using connectivity based on the PubGene literature co-citation network demonstrates that this tool can be used to identify key genes in DNA microarray studies of human polygenic diseases. Objectives. DNA microarray studies of complex diseases may reveal differential expression of hundreds of genes. According to network theory and studies of yeast cells, genes that are connected with several other genes appear to have key regulatory roles. This study aimed to examine if this principle can be translated to DNA microarray studies of human disease, using nasal polyposis as a base for the analysis. Materials and methods. The connectivity of differentially expressed genes from a previously described microarray study of nasal polyposis before and after treatment with glucocorticoids was determined. This was done using the literature co-citation network PubGene. Results. In all, 166 genes were differentially expressed; 39 of these were previously defined as inflammatory and considered important for nasal polyposis. The connectivity of all differentially expressed genes was analysed using the PubGene literature co-citation network. Seventy-four of the 166 genes were connected to other genes. By contrast, the average number of connected genes among 100 sets of 166 randomly chosen genes was 31.5. A small number of the differentially expressed genes were highly connected, while most genes had few or no connections. This indicated a scale-free network. The most connected gene was interleukin-8, an inflammatory gene of known importance for nasal polyposis. Twenty-eight of the 74 connected genes were inflammatory (38%), compared with 11 of the 92 unconnected genes (12%), p < 0.0001. Since most evidence suggests that nasal polyps are inflammatory in their nature, this supports the hypothesis that connected genes have more disease relevance than unconnected genes.
  •  
13.
  • Dominguez-Valentin, M, et al. (author)
  • Risk-Reducing Gynecological Surgery in Lynch Syndrome: Results of an International Survey from the Prospective Lynch Syndrome Database
  • 2020
  • In: Journal of clinical medicine. - : MDPI AG. - 2077-0383. ; 9:7
  • Journal article (peer-reviewed)abstract
    • Purpose: To survey risk-reducing hysterectomy and bilateral salpingo-oophorectomy (BSO) practice and advice regarding hormone replacement therapy (HRT) in women with Lynch syndrome. Methods: We conducted a survey in 31 contributing centers from the Prospective Lynch Syndrome Database (PLSD), which incorporates 18 countries worldwide. The survey covered local policies for risk-reducing hysterectomy and BSO in Lynch syndrome, the timing when these measures are offered, the involvement of stakeholders and advice regarding HRT. Results: Risk-reducing hysterectomy and BSO are offered to path_MLH1 and path_MSH2 carriers in 20/21 (95%) contributing centers, to path_MSH6 carriers in 19/21 (91%) and to path_PMS2 carriers in 14/21 (67%). Regarding the involvement of stakeholders, there is global agreement (~90%) that risk-reducing surgery should be offered to women, and that this discussion may involve gynecologists, genetic counselors and/or medical geneticists. Prescription of estrogen-only HRT is offered by 15/21 (71%) centers to women of variable age range (35–55 years). Conclusions: Most centers offer risk-reducing gynecological surgery to carriers of path_MLH1, path_MSH2 and path_MSH6 variants but less so for path_PMS2 carriers. There is wide variation in how, when and to whom this is offered. The Manchester International Consensus Group developed recommendations to harmonize clinical practice across centers, but there is a clear need for more research.
  •  
14.
  • Edsjö, A., et al. (author)
  • High-throughput molecular assays for inclusion in personalised oncology trials – State-of-the-art and beyond
  • 2024
  • In: Journal of Internal Medicine. - 0954-6820. ; 295:6, s. 785-803
  • Journal article (peer-reviewed)abstract
    • In the last decades, the development of high-throughput molecular assays has revolutionised cancer diagnostics, paving the way for the concept of personalised cancer medicine. This progress has been driven by the introduction of such technologies through biomarker-driven oncology trials. In this review, strengths and limitations of various state-of-the-art sequencing technologies, including gene panel sequencing (DNA and RNA), whole-exome/whole-genome sequencing and whole-transcriptome sequencing, are explored, focusing on their ability to identify clinically relevant biomarkers with diagnostic, prognostic and/or predictive impact. This includes the need to assess complex biomarkers, for example microsatellite instability, tumour mutation burden and homologous recombination deficiency, to identify patients suitable for specific therapies, including immunotherapy. Furthermore, the crucial role of biomarker analysis and multidisciplinary molecular tumour boards in selecting patients for trial inclusion is discussed in relation to various trial concepts, including drug repurposing. Recognising that today's exploratory techniques will evolve into tomorrow's routine diagnostics and clinical study inclusion assays, the importance of emerging technologies for multimodal diagnostics, such as proteomics and in vivo drug sensitivity testing, is also discussed. In addition, key regulatory aspects and the importance of patient engagement in all phases of a clinical trial are described. Finally, we propose a set of recommendations for consideration when planning a new precision cancer medicine trial. © 2024 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine.
  •  
15.
  • Gopalakrishnan, Shyam, et al. (author)
  • The population genomic legacy of the second plague pandemic
  • 2022
  • In: Current Biology. - : Elsevier. - 0960-9822 .- 1879-0445. ; 32:21, s. 4743-4751.e6
  • Journal article (peer-reviewed)abstract
    • Human populations have been shaped by catastrophes that may have left long-lasting signatures in their genomes. One notable example is the second plague pandemic that entered Europe in ca. 1,347 CE and repeatedly returned for over 300 years, with typical village and town mortality estimated at 10%–40%.1 It is assumed that this high mortality affected the gene pools of these populations. First, local population crashes reduced genetic diversity. Second, a change in frequency is expected for sequence variants that may have affected survival or susceptibility to the etiologic agent (Yersinia pestis).2 Third, mass mortality might alter the local gene pools through its impact on subsequent migration patterns. We explored these factors using the Norwegian city of Trondheim as a model, by sequencing 54 genomes spanning three time periods: (1) prior to the plague striking Trondheim in 1,349 CE, (2) the 17th–19th century, and (3) the present. We find that the pandemic period shaped the gene pool by reducing long distance immigration, in particular from the British Isles, and inducing a bottleneck that reduced genetic diversity. Although we also observe an excess of large FST values at multiple loci in the genome, these are shaped by reference biases introduced by mapping our relatively low genome coverage degraded DNA to the reference genome. This implies that attempts to detect selection using ancient DNA (aDNA) datasets that vary by read length and depth of sequencing coverage may be particularly challenging until methods have been developed to account for the impact of differential reference bias on test statistics.
  •  
16.
  •  
17.
  • Njølstad, Pål Rasmus, et al. (author)
  • Roadmap for a precision-medicine initiative in the Nordic region
  • 2019
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718.
  • Journal article (peer-reviewed)abstract
    • The Nordic region, comprising primarily Denmark, Estonia, Finland, Iceland, Norway and Sweden, has many of the necessary characteristics for being at the forefront of genome-based precision medicine. These include egalitarian and universal healthcare, expertly curated patient and population registries, biobanks, large population-based prospective cohorts linked to registries and biobanks, and a widely embraced sense of social responsibility that motivates public engagement in biomedical research. However, genome-based precision medicine can be achieved only through coordinated action involving all actors in the healthcare sector. Now is an opportune time to organize scientists in the Nordic region, together with other stakeholders including patient representatives, governments, pharmaceutical companies, academic institutions and funding agencies, to initiate a Nordic Precision Medicine Initiative. We present a roadmap for how this organization can be created. The Initiative should facilitate research, clinical trials and knowledge transfer to meet regional and global health challenges.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-17 of 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view