SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hrudkova M.) "

Sökning: WFRF:(Hrudkova M.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hrudkova, M., et al. (författare)
  • The discovery of a planetary candidate around the evolved low-mass Kepler giant star HD 175370
  • 2017
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 464:1, s. 1018-1028
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the discovery of a planetary companion candidate with a minimum mass M sin i = 4.6 +/- 1.0 M-Jupiter orbiting the K2 III giant star HD 175370 (KIC 007940959). This star was a target in our programme to search for planets around a sample of 95 giant stars observed with Kepler. This detection was made possible using precise stellar radial velocity measurements of HD 175370 taken over five years and four months using the coude echelle spectrograph of the 2-m Alfred Jensch Telescope and the fibre-fed echelle spectrograph High Efficiency and Resolution Mercator Echelle Spectrograph of the 1.2-m Mercator Telescope. Our radial velocity measurements reveal a periodic (349.5 +/- 4.5 d) variation with a semi-amplitude K = 133 +/- 25 ms(-1), superimposed on a long-term trend. A low-mass stellar companion with an orbital period of similar to 88 yr in a highly eccentric orbit and a planet in a Keplerian orbit with an eccentricity e = 0.22 are the most plausible explanation of the radial velocity variations. However, we cannot exclude the existence of stellar envelope pulsations as a cause for the low-amplitude radial velocity variations and only future continued monitoring of this system may answer this uncertainty. From Kepler photometry, we find that HD 175370 is most likely a low-mass red giant branch or asymptotic giant branch star.
  •  
2.
  • Young, D. R., et al. (författare)
  • Two type Ic supernovae in low-metallicity, dwarf galaxies : diversity of explosions
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 512, s. 70-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: The aim of this paper is to discuss the nature of two type Ic supernovae SN 2007bg and SN 2007bi and their host galaxies. Both supernovae were discovered in wide-field, non-targeted surveys and are found to be associated with sub-luminous blue dwarf galaxies identified in SDSS images. Methods: We present BVRI photometry and optical spectroscopy of SN 2007bg and SN 2007bi and their host galaxies. Their lightcurves and spectra are compared to those of other type Ic SNe and analysis of these data provides estimates of the energetics, total ejected masses and synthesised mass of 56Ni. Detection of the host galaxy emission lines allows for metallicity measurements. Results: Neither SNe 2007bg nor 2007bi were found in association with an observed GRB, but from estimates of the metallicities of their host-galaxies they are found to inhabit similar low-metallicity environments as GRB associated supernovae. The radio-bright SN 2007bg is hosted by an extremely sub-luminous galaxy of magnitude MB = -12.4 ± 0.6 mag and an estimated oxygen abundance of 12+log(O/H) = 8.18 ± 0.17 (on the Pettini & Pagel 2004 scale). The early lightcurve evolution of SN 2007bg matches the fast-pace decline of SN 1994I giving it one of the fastest post-maximum decline rates of all broad-lined type Ic supernovae known to date and, when combined with its high expansion velocities, a high kinetic energy to ejected mass ratio (EK/Mej~2.7). We also show that SN 2007bi is possibly the most luminous type Ic known, reaching a peak magnitude of MR ~ -21.3 mag and displays a remarkably slow decline, following the radioactive decay rate of 56Co to 56Fe throughout the course of its observed lifetime. SN 2007bi also displays an extreme longevity in its spectral evolution and is still not fully nebular at approximately one year post-maximum brightness. From a simple model of the bolometric light curve of SN 2007bi we estimate a total ejected 56Ni mass of MNi = 3.5-4.5 M_ȯ, the largest 56Ni mass measured in the ejecta of a supernova to date. There are two models that could explain the high luminosity and large ejected 56Ni mass. One is a pair-instability supernova (PISN) which has been predicted to occur for massive stars at low metallicities. We measure the host galaxy metallicity of SN 2007bi to be 12+log(O/H) = 8.15 ± 0.15 (on the McGaugh 1991 scale) which is somewhat high to be consistent with the PISN model. An alternative is the core-collapse of a C+O star of 20-40 Mȯ which is the core of a star of originally 50-100 Mȯ.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy