SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hu Fengling) "

Sökning: WFRF:(Hu Fengling)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zhang, Xin, et al. (författare)
  • Light-Up Lipid Droplets Dynamic Behaviors Using a Red-Emitting Fluorogenic Probe
  • 2020
  • Ingår i: Analytical Chemistry. - : AMER CHEMICAL SOC. - 0003-2700 .- 1520-6882. ; 92:5, s. 3613-3619
  • Tidskriftsartikel (refereegranskat)abstract
    • Intracellular lipid metabolism occurs in lipid droplets (LDs), which is critical to the survival of cells. Imaging LDs is an intuitive way to understand their physiology in live cells. However, this is limited by the availability of specific probes that can properly visualize LDs in vivo. Here, an LDs-specific red-emitting probe is proposed to address this need, which is not merely with an ultrahigh signal-to-noise (S/N) ratio and a large Stokes shift (up to 214 nm) but also with superior resistance to photobleaching. The probe has been successfully applied to real-time tracking of intracellular LDs behaviors, including fusion, migration, and lipophagy processes. We deem that the proposed probe here offers a new possibility for deeper understanding of LDs-associated behaviors, elucidation of their roles and mechanisms in cellular metabolism, and determination of the transition between adaptive lipid storage and lipotoxicity as well.
  •  
2.
  • Zhang, Xin, et al. (författare)
  • Tailorable Membrane-Penetrating Nanoplatform for Highly Efficient Organelle-Specific Localization
  • 2021
  • Ingår i: Small. - : Wiley-V C H Verlag GMBH. - 1613-6810 .- 1613-6829. ; 17:31
  • Tidskriftsartikel (refereegranskat)abstract
    • Given the breadth of currently arising opportunities and concerns associated with nanoparticles for biomedical imaging, various types of nanoparticles have been widely exploited, especially for cellular/subcellular level probing. However, most currently reported nanoparticles either have inefficient delivery into cells or lack specificity for intracellular destinations. The absence of well-defined nanoplatforms remains a critical challenge hindering practical nano-based bio-imaging. Herein, the authors elaborate on a tailorable membrane-penetrating nanoplatform as a carrier with encapsulated actives and decorated surfaces to tackle the above-mentioned issues. The tunable contents in such a versatile nanoplatform offer huge flexibility to reach the expected properties and functions. Aggregation-induced emission luminogen (AIEgen) is applied to achieve sought-after photophysical properties, specific targeting moieties are installed to give high affinity towards different desired organelles, and critical grafting of cell-penetrating cyclic disulfides (CPCDs) to promote cellular uptake efficiency without sacrificing the specificity. Hereafter, to validate its practicability, the tailored nano products are successfully applied to track the dynamic correlation between mitochondria and lysosomes during autophagy. The authors believe that the strategy and described materials can facilitate the development of functional nanomaterials for various life science applications.
  •  
3.
  • Du, Chun, et al. (författare)
  • 9-Alkylidene-9H-Fluorene-Containing Polymer for High-Efficiency Polymer Solar Cells
  • 2011
  • Ingår i: Macromolecules. - : American Chemical Society. - 0024-9297 .- 1520-5835. ; 44:19, s. 7617-7624
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel donor-acceptor copolymer containing 9-alkylidene-9H-fluorene unit in the main chain, poly[9-(1-hexylheptylidene)-2,7-fluorene-alt-5, 5-(4,7-di-2-thienyl-5,6-dialkoxy-2,1,3-benzothiadiazole)] (PAFDTBT), has been synthesized and evaluated in bulk heterojunction polymer solar cells (BHJ PSCs). The polymer possesses a low band gap of 1.84 eV, a low-lying HOMO energy level (5.32 eV), and excellent solubility in common organic solvents. PSCs based on PAFDTBT and (6,6)-phenyl-C(71)-butyric add methyl ester (PC(71)BM) demonstrate a power conversion efficiency (PCE) of 6.2% with a high fill factor (FF) of 0.70, which indicates that 9-alkylidene-9H-fluorene can be a very useful building block for constructing narrow band gap conjugated polymers for high-efficiency BHJ PSCs.
  •  
4.
  • Hao, Chenglin, et al. (författare)
  • Low-temperature molten-salt synthesis of Co3O4 nanoparticles grown on MXene can rapidly remove ornidazole via peroxymonosulfate activation
  • 2023
  • Ingår i: Environmental Pollution. - : Elsevier. - 0269-7491 .- 1873-6424. ; 334
  • Tidskriftsartikel (refereegranskat)abstract
    • We further developed previous work on MXene materials prepared using molten salt methodology. We substituted single, with mixed salts, and reduced the melting point from >724 °C to <360 °C. Cobalt (Co) compounds were simultaneously etched and doped while the MXene material was created using various techniques in which Co compounds occur as Co3O4. The synthesized Co3O4/MXene compound was used as a peroxymonosulfate (PMS) activator that would generate free radicals to degrade antibiotic ornidazole (ONZ). Under optimal conditions, almost 100% of ONZ (30 mg/L) was degraded within 10 min. The Co3O4/MXene + PMS system efficiently degraded ONZ in natural water bodies, and had a broad pH adaptation range (4–11), and strong anion anti-interference. We investigated how the four active substances were generated using radical quenching and electron paramagnetic resonance (EPR) spectroscopy. We identified 12 ONZ intermediates by liquid chromatography-mass spectrometry and propose a plausible degradative mechanism.
  •  
5.
  • Jiang, Qinglin, et al. (författare)
  • High Thermoelectric Performance in n-Type Perylene Bisimide Induced by the Soret Effect
  • 2020
  • Ingår i: Advanced Materials. - : WILEY-V C H VERLAG GMBH. - 0935-9648 .- 1521-4095. ; 32:45
  • Tidskriftsartikel (refereegranskat)abstract
    • Low-cost, non-toxic, abundant organic thermoelectric materials are currently under investigation for use as potential alternatives for the production of electricity from waste heat. While organic conductors reach electrical conductivities as high as their inorganic counterparts, they suffer from an overall low thermoelectric figure of merit (ZT) due to their small Seebeck coefficient. Moreover, the lack of efficient n-type organic materials still represents a major challenge when trying to fabricate efficient organic thermoelectric modules. Here, a novel strategy is proposed both to increase the Seebeck coefficient and achieve the highest thermoelectric efficiency for n-type organic thermoelectrics to date. An organic mixed ion-electron n-type conductor based on highly crystalline and reduced perylene bisimide is developed. Quasi-frozen ionic carriers yield a large ionic Seebeck coefficient of -3021 mu V K-1, while the electronic carriers dominate the electrical conductivity which is as high as 0.18 S cm(-1)at 60% relative humidity. The overall power factor is remarkably high (165 mu W m(-1)K(-2)), with aZT= 0.23 at room temperature. The resulting single leg thermoelectric generators display a high quasi-constant power output. This work paves the way for the design and development of efficient organic thermoelectrics by the rational control of the mobility of the electronic and ionic carriers.
  •  
6.
  • Rando, Halie M, et al. (författare)
  • Identification and Development of Therapeutics for COVID-19
  • 2021
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • After emerging in China in late 2019, the novel Severe acute respiratory syndrome-like coronavirus 2 (SARS-CoV-2) spread worldwide and as of early 2021, continues to significantly impact most countries. Only a small number of coronaviruses are known to infect humans, and only two are associated with the severe outcomes associated with SARS-CoV-2: Severe acute respiratory syndrome-related coronavirus, a closely related species of SARS-CoV-2 that emerged in 2002, and Middle East respiratory syndrome-related coronavirus, which emerged in 2012. Both of these previous epidemics were controlled fairly rapidly through public health measures, and no vaccines or robust therapeutic interventions were identified. However, previous insights into the immune response to coronaviruses gained during the outbreaks of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) have proved beneficial to identifying approaches to the treatment and prophylaxis of novel coronavirus disease 2019 (COVID-19). A number of potential therapeutics against SARS-CoV-2 and the resultant COVID-19 illness were rapidly identified, leading to a large number of clinical trials investigating a variety of possible therapeutic approaches being initiated early on in the pandemic. As a result, a small number of therapeutics have already been authorized by regulatory agencies such as the Food and Drug Administration (FDA) in the United States, and many other therapeutics remain under investigation. Here, we describe a range of approaches for the treatment of COVID-19, along with their proposed mechanisms of action and the current status of clinical investigation into each candidate. The status of these investigations will continue to evolve, and this review will be updated as progress is made.
  •  
7.
  • Rando, Halie M., et al. (författare)
  • Identification and development of therapeutics for COVID-19
  • 2021
  • Ingår i: mSystems. - 2379-5077. ; 6:6
  • Forskningsöversikt (refereegranskat)abstract
    • After emerging in China in late 2019, the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread worldwide, and as of mid- 2021, it remains a significant threat globally. Only a few coronaviruses are known to infect humans, and only two cause infections similar in severity to SARS-CoV-2: Severe acute respiratory syndrome-related coronavirus, a species closely related to SARS-CoV-2 that emerged in 2002, and Middle East respiratory syndrome-related coronavirus, which emerged in 2012. Unlike the current pandemic, previous epidemics were controlled rapidly through public health measures, but the body of research investigating severe acute respiratory syndrome and Middle East respiratory syndrome has proven valuable for identifying approaches to treating and preventing novel coronavirus disease 2019 (COVID-19). Building on this research, the medical and scientific communities have responded rapidly to the COVID-19 crisis and identified many candidate therapeutics. The approaches used to identify candidates fall into four main categories: adaptation of clinical approaches to diseases with related pathologies, adaptation based on virological properties, adaptation based on host response, and data-driven identification (ID) of candidates based on physical properties or on pharmacological compendia. To date, a small number of therapeutics have already been authorized by regulatory agencies such as the Food and Drug Administration (FDA), while most remain under investigation. The scale of the COVID-19 crisis offers a rare opportunity to collect data on the effects of candidate therapeutics. This information provides insight not only into the management of coronavirus diseases but also into the relative success of different approaches to identifying candidate therapeutics against an emerging disease. IMPORTANCE The COVID-19 pandemic is a rapidly evolving crisis. With the worldwide scientific community shifting focus onto the SARS-CoV-2 virus and COVID-19, a large number of possible pharmaceutical approaches for treatment and prevention have been proposed. What was known about each of these potential interventions evolved rapidly throughout 2020 and 2021. This fast-paced area of research provides important insight into how the ongoing pandemic can be managed and also demonstrates the power of interdisciplinary collaboration to rapidly understand a virus and match its characteristics with existing or novel pharmaceuticals. As illustrated by the continued threat of viral epidemics during the current millennium, a rapid and strategic response to emerging viral threats can save lives. In this review, we explore how different modes of identifying candidate therapeutics have borne out during COVID-19.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy