SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hu Zhanhao) "

Sökning: WFRF:(Hu Zhanhao)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jiang, Yan, et al. (författare)
  • Negligible-Pb-Waste and Upscalable Perovskite Deposition Technology for High-Operational-Stability Perovskite Solar Modules
  • 2019
  • Ingår i: Advanced Energy Materials. - : Wiley-VCH Verlagsgesellschaft. - 1614-6832 .- 1614-6840. ; 9:13
  • Tidskriftsartikel (refereegranskat)abstract
    • An upscalable perovskite film deposition method combining raster ultrasonic spray coating and chemical vapor deposition is reported. This method overcomes the coating size limitation of the existing stationary spray, single-pass spray, and spin-coating methods. In contrast with the spin-coating method (>90% Pb waste), negligible Pb waste during PbI2 deposition makes this method more environmentally friendly. Outstanding film uniformity across the entire area of 5 cm x 5 cm is confirmed by both large-area compatible characterization methods (electroluminescence and scattered light imaging) and local characterization methods (atomic force microscopy, scanning electron microscopy, photoluminescence mapping, UV-vis, and X-ray diffraction measurements on multiple sample locations), resulting in low solar cell performance decrease upon increasing device area. With the FAPb(I0.85Br0.15)(3) (FA = formamidinium) perovskite layer deposited by this method, champion solar modules show a power conversion efficiency of 14.7% on an active area of 12.0 cm(2) and an outstanding shelf stability (only 3.6% relative power conversion efficiency decay after 3600 h aging). Under continuous operation (1 sun light illumination, maximum power point condition, dry N-2 atmosphere with <5% relative humidity, no encapsulation), the devices show high light-soaking stability corresponding to an average T-80 lifetime of 535 h on the small-area solar cells and 388 h on the solar module.
  •  
2.
  • Peng, Zuosheng, et al. (författare)
  • A dual ternary system for highly efficient ITO-free inverted polymer solar cells
  • 2015
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 3:36, s. 18365-18371
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, it has been found that a very fine nanostructure can be realized by mixing 1-chloronaphthalene (CN) - a high-boiling solvent into a binary chlorobenzene (CB) : 1,8-diiodooctane (DIO) solvent mixture to form a ternary solvent system. An improvement in energy level alignment is also obtained by doping ICBA into a binary PTB7 : PCBM[70] blend, whereby the ternary solute system provides a new pathway for charge transfer from PTB7 to the PCBM[ 70] : ICBA alloy. This is confirmed by imaging the surface morphology of the active layer using AFM and TEM, monitoring the transient film formation process and measuring the charge transfer states with Fourier transform photocurrent spectroscopy. An encouraging PCE of 7.65% is achieved from the dual ternary system, which is the highest value ever reported for an ITO-free inverted polymer solar cell with a PEDOT:PSS layer as the top semitransparent electrode - a system which is compatible with low-cost large-area roll-to-roll manufacturing.
  •  
3.
  • Peng, Zuosheng, et al. (författare)
  • One-step coating inverted polymer solar cells using a conjugated polymer as an electron extraction additive
  • 2015
  • Ingår i: Journal of Materials Chemistry A. - : ROYAL SOC CHEMISTRY. - 2050-7488 .- 2050-7496. ; 3:41, s. 20500-20507
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a facile technique of blending a conjugated polymer thieno[3,4-b]thiophene/benzodithiophene (PTB7):[6,6]-phenyl-C71-butyric acid methyl ester (PCBM[70]) active materials with a conjugated interfacial modification polymer poly[(9,9-bis(3-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) to simplify the coating process and improve the bulk heterojunction (BHJ) polymer solar cell (PSC) performance. The reason for and result of PFN self-organization via a spontaneous vertical delamination onto the ITO surface were investigated by charge transfer state, optical modelling based on transfer matrix formalism, surface energy measurement, scanning Kelvin probe force microscopy and impedance spectroscopy analysis in conjunction with atomic force microscopy and scanning electron microscopy. The relaxed charge transfer state demonstrates that PFN doping has a negligible impact on the donor: acceptor heterojunction interface. The optical simulation of device structures indicates that doping PFN into a BHJ has nearly no influence on the photon absorption profile of the active layer. Very encouraging device performance was achieved in the one-step coating PFN: BHJ PSC with ITO as the cathode, which is comparable to that of the two-step coating PSC. Moreover, for ITO-free inverted PSCs with PEDOT:PSS as the incident light top-electrode, decent device performance can also be obtained, demonstrating the remarkable universality through this facile strategy.
  •  
4.
  • Wu, Zhifang, et al. (författare)
  • Highly Efficient and Stable Perovskite Solar Cells via Modification of Energy Levels at the Perovskite/Carbon Electrode Interface
  • 2019
  • Ingår i: Advanced Materials. - : Wiley-VCH Verlagsgesellschaft. - 0935-9648 .- 1521-4095. ; 31:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Perovskite solar cells (PSCs) have attracted great attention in the past few years due to their rapid increase in efficiency and low-cost fabrication. How-ever, instability against thermal stress and humidity is a big issue hindering their commercialization and practical applications. Here, by combining thermally stable formamidinium-cesium-based perovskite and a moisture-resistant carbon electrode, successful fabrication of stable PSCs is reported, which maintain on average 77% of the initial value after being aged for 192 h under conditions of 85 degrees C and 85% relative humidity (the "double 85" aging condition) without encapsulation. However, the mismatch of energy levels at the interface between the perovskite and the carbon electrode limits charge collection and leads to poor device performance. To address this issue, a thin-layer of poly(ethylene oxide) (PEO) is introduced to achieve improved interfacial energy level alignment, which is verified by ultraviolet photoemission spectroscopy measurements. Indeed as a result, power conversion efficiency increases from 12.2% to 14.9% after suitable energy level modification by intentionally introducing a thin layer of PEO at the perovskite/carbon interface.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy