SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Huang Shan 1987) "

Sökning: WFRF:(Huang Shan 1987)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  •  
3.
  • Huang, Shan, 1987- (författare)
  • Interaction between biomaterials and innate immunity with clinical implications
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Today there is an increasing clinical demand and expectation of patients for biomaterials, which underscores the importance of discovering the correlations between biomaterials and biological systems, especially blood. When an artificial material makes contact with blood, the first event is a rapid adsorption of plasma protein on the material surface, on top of which the innate immune system is triggered, with potentially detrimental consequences. The work presented in this thesis, reported in four papers, was designed to investigate complications associated with (a) biomaterial-induced immune systems, including activation mechanisms and crosstalk between cascades on the biomaterial surface, and with (b) clinical investigations.In Paper I and Paper II, a series of studies led to the development of a direct prediction of the subsequent biological events based on the pattern of initially bound proteins. A reciprocal relationship was demonstrated between activation of the contact system and the complement system when they were induced on artificial material surfaces. Based on these studies, a robust and simple method for biocompatibility testing was proposed and validated, yielding high specificity and sensitivity when compared to today’s gold standard. Paper III investigated biomaterial-induced activation of complement and leukocytes in dialysis treatment-related conditions. The results suggested that citrate is more biocompatible than the conventionally used acetate. This reduction in activation could be further enhanced with higher citrate concentrations, suggesting that dialysis fluid containing citrate is a promising alternative to acetate dialysis fluid. Paper IV investigated complement initiation mechanisms with clinical implications. An experimental system was set up to revisit the initiation of the complement alternative pathway, and correlations were found between chaotropic or nucleophilic agents and iC3 generation under physiologically relevant conditions. A clinical study of hepatic encephalopathy patients indicated a direct correlation between elevated plasma ammonia and iC3 formation, as well as with complement activation in vivo. Taken together, these studies have provided a model for a robust biomaterial test and have investigated biomaterial-induced complications in the fluid phase in clinically related conditions; furthermore, the basic mechanisms of complement activation have been dissected in relation to disease symptoms.Keywords: Complement system, contact system, blood, biomaterials, biocompatibility, in vitro screening, iC3, dialysis
  •  
4.
  • Jaradat, Ahmad, et al. (författare)
  • A High-Rate Li–CO2 Battery Enabled by 2D Medium-Entropy Catalyst
  • 2023
  • Ingår i: Advanced Functional Materials. - 1616-301X .- 1616-3028. ; 33:21
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium-air batteries based on CO2 reactant (Li–CO2) have recently been of interest because it has been found that reversible Li/CO2 electrochemistry is feasible. In this study, a new medium-entropy cathode catalyst, (NbTa)0.5BiS3, that enables the reversible electrochemistry to operate at high rates is presented. This medium entropy cathode catalyst is combined with an ionic liquid-based electrolyte blend to give a Li–CO2 battery that operates at high current density of 5000 mA g−1 and capacity of 5000 mAh g−1 for up to 125 cycles, far exceeding reported values in the literature for this type of battery. The higher rate performance is believed to be due to the greater stability of the multi-element (NbTa)0.5BiS3 catalyst because of its higher entropy compared to previously used catalysts with a smaller number of elements with lower entropies. Evidence for this comes from computational studies giving very low surface energies (high surface stability) for (NbTa)0.5BiS3 and transmission electron microscopystudies showing the structure being retained after cycling. In addition, the calculations indicate that Nb-terminated surface promotes Li–CO2 electrochemistry resulting in Li2CO3 and carbon formation, consistent with the products found in the cell. These results open new direction to design and develop high-performance Li–CO2 batteries. 
  •  
5.
  • Wang, Hao, 1975, et al. (författare)
  • Genome-scale metabolic network reconstruction of model animals as a platform for translational research
  • 2021
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 118:30
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-scale metabolic models (GEMs) are used extensively for analysis of mechanisms underlying human diseases and metabolic malfunctions. However, the lack of comprehensive and high-quality GEMs for model organisms restricts translational utilization of omics data accumulating from the use of various disease models. Here we present a unified platform of GEMs that covers five major model animals, including Mouse1 (Mus musculus), Rat1 (Rattus norvegicus), Zebrafish1 (Danio rerio), Fruitfly1 (Drosophila melanogaster), and Worm1 (Caenorhabditis elegans). These GEMs represent the most comprehensive coverage of the metabolic network by considering both orthology-based pathways and species-specific reactions. All GEMs can be interactively queried via the accompanying web portal Metabolic Atlas. Specifically, through integrative analysis of Mouse1 with RNA-sequencing data from brain tissues of transgenic mice we identified a coordinated up-regulation of lysosomal GM2 ganglioside and peptide degradation pathways which appears to be a signature metabolic alteration in Alzheimer’s disease (AD) mouse models with a phenotype of amyloid precursor protein overexpression. This metabolic shift was further validated with proteomics data from transgenic mice and cerebrospinal fluid samples from human patients. The elevated lysosomal enzymes thus hold potential to be used as a biomarker for early diagnosis of AD. Taken together, we foresee that this evolving open-source platform will serve as an important resource to facilitate the development of systems medicines and translational biomedical applications.
  •  
6.
  • Zhang, Chengji, et al. (författare)
  • Lithium superoxide-based high rate Li-Air batteries enabled by Di-iridium sulfur bridge active sites
  • 2023
  • Ingår i: Energy Storage Materials. - 2405-8289 .- 2405-8297. ; 60
  • Tidskriftsartikel (refereegranskat)abstract
    • Li-oxygen (Li-O2) batteries can potentially provide much higher energy density than Li-ion batteries; however, the practical application of these batteries is hindered due to several drawbacks such as low current rates and high overpotential for the charging process. In this paper, we report a novel Li-Air battery system that operates under high current rates (up to 1mAcm  2) with LiO2 as the primary discharge product instead of the commonly reported Li2O2. This LiO2 based battery at high rates is through a combination of an as-synthesized new onedimensional (1D) transition metal trichalcogenide mid-entropy alloy of SnIrS3.6 as a cathode catalyst and an electrolyte blend with a SnI2 bi-functional additive. It is revealed that SnIrS3.6 has a microporous structure composed of six- and five-coordinated metal atoms, forming octahedral and triangular bipyramids which has not been observed in other layered chalcogeide materials. DFT calculations reveal that the SnIrS3.6 structure can result in LiO2 formation through di-iridium sulfur bridge active sites that results in strong binding of O2 and LiO2 preventing disproportionation to Li2O2 and enabling high rates. This finding will open a new perspective in designing advanced LiO2-based Li-O2 batteries for real practices.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6
Typ av publikation
tidskriftsartikel (4)
annan publikation (1)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (4)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Kelly, Daniel (1)
Bengtsson-Palme, Joh ... (1)
Nilsson, Henrik (1)
Kelly, Ryan (1)
Li, Ying (1)
Nielsen, Jens B, 196 ... (1)
visa fler...
Moore, Matthew D. (1)
Zetterberg, Henrik, ... (1)
Liu, Fang (1)
Zhang, Yao (1)
Jin, Yi (1)
Raza, Ali (1)
Rafiq, Muhammad (1)
Zhang, Kai (1)
Khatlani, T (1)
Kahan, Thomas (1)
Sörelius, Karl, 1981 ... (1)
Batra, Jyotsna (1)
Roobol, Monique J (1)
Backman, Lars (1)
Nilsson Ekdahl, Kris ... (1)
Nilsson, Bo (1)
Yan, Hong (1)
Sandholm, Kerstin (1)
Schmidt, Axel (1)
Lorkowski, Stefan (1)
Thrift, Amanda G. (1)
Zhang, Wei (1)
Hammerschmidt, Sven (1)
Patil, Chandrashekha ... (1)
Wang, Jun (1)
Pollesello, Piero (1)
Conesa, Ana (1)
El-Esawi, Mohamed A. (1)
Zhang, Weijia (1)
Rorsman, Fredrik (1)
Li, Jian (1)
Marinello, Francesco (1)
Frilander, Mikko J. (1)
Wei, Pan (1)
Badie, Christophe (1)
Zhao, Jing (1)
Li, You (1)
Bansal, Abhisheka (1)
Rahman, Proton (1)
Parchi, Piero (1)
Gobom, Johan (1)
Polz, Martin (1)
Ijzerman, Adriaan P. (1)
Subhash, Santhilal, ... (1)
visa färre...
Lärosäte
Stockholms universitet (3)
Göteborgs universitet (2)
Chalmers tekniska högskola (2)
Linnéuniversitetet (2)
Karolinska Institutet (2)
Kungliga Tekniska Högskolan (1)
visa fler...
Uppsala universitet (1)
Högskolan i Halmstad (1)
Lunds universitet (1)
visa färre...
Språk
Engelska (6)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (5)
Medicin och hälsovetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy