SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Huang Wenjuan) "

Sökning: WFRF:(Huang Wenjuan)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Ji, Yuanhui, et al. (författare)
  • Theoretical limit of energy consumption for removal of organic contaminants in U.S. EPA Priority Pollutant List by NRTL, UNIQUAC and Wilson models
  • 2010
  • Ingår i: Fluid Phase Equilibria. - : Elsevier BV. - 0378-3812 .- 1879-0224. ; 297:2, s. 210-214
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper quantifies the theoretical limit of energy consumption for the removal of 20 representative organic contaminants (9 chlorinated alkyl hydrocarbons, 3 chlorinated alkenes, 3 brominated methanes, 5 aromatic hydrocarbons and their derivatives) in the United States Environmental Protection Agency (U.S. EPA) Priority Pollutant List by physical procedures. The general rules of the theoretical limit of energy consumption with different initial concentrations at 298.15 K and 1.01325 × 105 Pa by NRTL, UNIQUAC and Wilson models are obtained from the thermodynamic analysis with our previously established method based on the thermodynamic first and second law. The results show that the waste treatment process needs a high energy consumption and the theoretical limit of energy consumption for organic contaminant removal increases with decreasing initial concentrations in aqueous solutions. The theoretical limit of energy consumption decreases with the more C-H bonds being replaced by C-Cl or C-Br bonds in chlorinated methanes, ethanes, ethenes or brominated methanes except for 1,1,2,2-tetrachloroethane, and the energy consumption for the removal of chlorinated methanes is higher than that of chlorinated ethanes with the same C-H bonds being replaced by C-Cl bonds. For the removal of chlorinated ethenes, brominated methanes and benzene and its derivatives studied, the energy consumption has corresponding relationship with solubility and the energy consumption is higher for the removal of organics with higher solubility.
  •  
3.
  • Ji, Yuanhui, et al. (författare)
  • Thermodynamic analysis on the mineralization of trace organic contaminants with oxidants in advanced oxidation processes
  • 2009
  • Ingår i: Industrial & Engineering Chemistry Research. - : American Chemical Society (ACS). - 0888-5885 .- 1520-5045. ; 48:23, s. 10728-10733
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a growing demand for the efficient treatment of organic polluted wastewaters by advanced oxidation processes (AOPs) which calls for the determination of the mineralization order of ease for the organic contaminants with oxidants. The mineralization abilities of organic contaminants in AOPs are investigated in this work. Photocatalytic experiments for three representative organic contaminants are carried out, and their corresponding reaction rates are determined experimentally. Meanwhile, molar Gibbs free energy changes Delta(r)G(m)degrees for the reactions of 31 organic contaminants (10 chlorinated hydrocarbons, four brominated hydrocarbons, I I aromatic hydrocarbons and their derivatives, three chloroacetic acid, and three chloroacetyl chloride) with oxidants of (OH)-O-center dot, H2O2, O-center dot(-), O-3, and O-2 are calculated, and the mineralization order of ease is determined theoretically on the basis of Delta(r)G(m)degrees. The agreement of the theoretical and experimental mineralization abilities for most of the organic contaminants investigated implies the reliability of the determination of the mineralization ability from the magnitude of Delta(r)G(m)degrees for the mineralization of trace organic contaminants. Results also show that for most of the organic contaminants studied, the mineralization abilities are (OH)-O-center dot > H2O2 > O-center dot(-) > O-3 > O-2, and the mineralization ability of the organic contaminants depends on not only the oxidants but also the structure and properties of the organic contaminants themselves, and the degradation reaction products.
  •  
4.
  • Ji, Yuanhui, et al. (författare)
  • Thermodynamic study on the reactivity of trace organic contaminant with the hydroxyl radicals in waters by advanced oxidation processes
  • 2009
  • Ingår i: Fluid Phase Equilibria. - : Elsevier BV. - 0378-3812 .- 1879-0224. ; 277:1, s. 15-19
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper is to investigate the degradation abilities of various chlorinated aliphatics, benzene and its derivatives in order to treat organic polluted wastewaters efficiently by advanced oxidation processes (AOPs). A thermodynamic method is proposed to calculate the standard molar Gibbs energy of formation for aqueous organic species. Using the method proposed, the standard molar Gibbs energies of formation for 31 aqueous organic species are obtained. Moreover, the molar Gibbs energy change of reaction Δr Gm0 for the organic species with hydroxyl radicals is calculated from the standard molar Gibbs energy of formation for aqueous organic species to determine the degradation order of ease for the organic species. New photocatalytic experiments are carried out for the model verification. The calculation results of the model agree with the available and new experimental results. This work shows that the thermodynamics of the degradation reaction for the organic pollutants in AOPs can find the corresponding relationships with the degradation reaction rate by experimental measurements. The work in this paper represents a success of thermodynamics for the application in environmental area.
  •  
5.
  • Liu, Lihui, et al. (författare)
  • Two-In-One Method for Graphene Transfer: Simplified Fabrication Process for Organic Light-Emitting Diodes
  • 2018
  • Ingår i: ACS Applied Materials & Interfaces. - : American Chemical Society (ACS). - 1944-8252 .- 1944-8244. ; 10:8, s. 7289-7295
  • Tidskriftsartikel (refereegranskat)abstract
    • Graphene as one of the most promising transparent electrode materials has been successfully applied in organic light-emitting diodes (OLEDs). However, traditional poly(methyl methacrylate) (PMMA) transfer method usually results in hardly removed polymeric residues on the graphene surface, which induces unwanted leakage current, poor diode behavior, and even device failure. In this work, we proposed a facile and efficient two-in-one method to obtain clean graphene and fabricate OLEDs, in which the poly(9,9-di-n-octylfluorene-alt-(1,4-phenylene-(4-sec-butylphenyl)imino)-1,4-phenylene) (TFB) layer was inserted between the graphene and PMMA film both as a protector during the graphene transfer and a hole-injection layer in OLEDs. Finally, green OLED devices were successfully fabricated on the PMMA-free graphene/TFB film, and the device luminous efficiency was increased from 64.8 to 74.5 cd/A by using the two-in-one method. Therefore, the proposed two-in-one graphene transfer method realizes a high-efficient graphene transfer and device fabrication process, which is also compatible with the roll-to-roll manufacturing. It is expected that this work can enlighten the design and fabrication of the graphene-based optoelectronic devices.
  •  
6.
  • Zhou, Guoyi, et al. (författare)
  • Climate and litter C/N ratio constrain soil organic carbon accumulation
  • 2019
  • Ingår i: National Science Review. - : Oxford University Press (OUP). - 2095-5138 .- 2053-714X. ; 6:4, s. 746-757
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil organic carbon (SOC) plays critical roles in stabilizing atmospheric CO2 concentration, but the mechanistic controls on the amount and distribution of SOC on global scales are not well understood. In turn, this has hampered the ability to model global C budgets and to find measures to mitigate climate change. Here, based on the data from a large field survey campaign with 2600 plots across China's forest ecosystems and a global collection of published data from forested land, we find that a low litter carbon-to-nitrogen ratio (C/N) and high wetness index (P/PET, precipitation-to-potential-evapotranspiration ratio) are the two factors that promote SOC accumulation, with only minor contributions of litter quantity and soil texture. The field survey data demonstrated that high plant diversity decreased litter C/N and thus indirectly promoted SOC accumulation by increasing the litter quality. We conclude that any changes in plant-community composition, plant-species richness and environmental factors that can reduce the litter C/N ratio, or climatic changes that increase wetness index, may promote SOC accumulation. The study provides a guideline for modeling the carbon cycle of various ecosystem scales and formulates the principle for land-based actions for mitigating the rising atmospheric CO2 concentration.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy