SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hubálek František) "

Sökning: WFRF:(Hubálek František)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abramson, Alex, et al. (författare)
  • An ingestible self-orienting system for oral delivery of macromolecules
  • 2019
  • Ingår i: Science. - : AMER ASSOC ADVANCEMENT SCIENCE. - 0036-8075 .- 1095-9203. ; 363:6427, s. 611-
  • Tidskriftsartikel (refereegranskat)abstract
    • Biomacromolecules have transformed our capacity to effectively treat diseases; however, their rapid degradation and poor absorption in the gastrointestinal (GI) tract generally limit their administration to parenteral routes. An oral biologic delivery system must aid in both localization and permeation to achieve systemic drug uptake. Inspired by the leopard tortoise's ability to passively reorient, we developed an ingestible self-orienting millimeter-scale applicator (SOMA) that autonomously positions itself to engage with GI tissue. It then deploys milliposts fabricated from active pharmaceutical ingredients directly through the gastric mucosa while avoiding perforation. We conducted in vivo studies in rats and swine that support the applicator's safety and, using insulin as a model drug, demonstrated that the SOMA delivers active pharmaceutical ingredient plasma levels comparable to those achieved with subcutaneous millipost administration.
  •  
2.
  • Abramson, Alex, et al. (författare)
  • Oral delivery of systemic monoclonal antibodies, peptides and small molecules using gastric auto-injectors
  • 2021
  • Ingår i: Nature Biotechnology. - : Springer Nature. - 1087-0156 .- 1546-1696. ; 40:1, s. 103-109
  • Tidskriftsartikel (refereegranskat)abstract
    • Oral administration provides a simple and non-invasive approach for drug delivery. However, due to poor absorption and swift enzymatic degradation in the gastrointestinal tract, a wide range of molecules must be parenterally injected to attain required doses and pharmacokinetics. Here we present an orally dosed liquid auto-injector capable of delivering up to 4-mg doses of a bioavailable drug with the rapid pharmacokinetics of an injection, reaching an absolute bioavailability of up to 80% and a maximum plasma drug concentration within 30 min after dosing. This approach improves dosing efficiencies and pharmacokinetics an order of magnitude over our previously designed injector capsules and up to two orders of magnitude over clinically available and preclinical chemical permeation enhancement technologies. We administered the capsules to swine for delivery of clinically relevant doses of four commonly injected medications, including adalimumab, a GLP-1 analog, recombinant human insulin and epinephrine. These multi-day dosing experiments and oral administration in awake animal models support the translational potential of the system. 
  •  
3.
  • Caffarel-Salvador, Ester, et al. (författare)
  • A microneedle platform for buccal macromolecule delivery
  • 2021
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 7:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Alternative means for drug delivery are needed to facilitate drug adherence and administration. Microneedles (MNs) have been previously investigated transdermally for drug delivery. To date, drug loading into MNs has been limited by drug solubility in the polymeric blend. We designed a highly drug-loaded MN patch to deliver macromolecules and applied it to the buccal area, which allows for faster delivery than the skin. We successfully delivered 1-mg payloads of human insulin and human growth hormone to the buccal cavity of swine within 30 s. In addition, we conducted a trial in 100 healthy volunteers to assess potential discomfort associated with MNs when applied in the oral cavity, identifying the hard palate as the preferred application site. We envisage that MN patches applied on buccal surfaces could increase medication adherence and facilitate the painless delivery of biologics and other drugs to many, especially for the pediatric and elderly populations.
  •  
4.
  • Norrman, Mathias, et al. (författare)
  • Structural characterization of insulin NPH formulations
  • 2007
  • Ingår i: European Journal of Pharmaceutical Sciences. - : Elsevier BV. - 1879-0720 .- 0928-0987. ; 30:5, s. 414-423
  • Tidskriftsartikel (refereegranskat)abstract
    • Insulin NPH (neutral protamine hagedorn) has for long been one of the most important therapeutic formulations for the treatment of diabetes. The protracted action profile of NPH formulations is gained from crystallizing insulin with zinc in the presence of the basic poly-arginine peptide protamine. In spite of its long history and successful use, the binding mode of the insulin-protamine complex is not known. in this study, three different systems were used to study protamine binding to insulin. In the first system, crystals of an insulin-protamine complex grown in the presence of urea and diffracting to 1.5 angstrom resolution were analyzed. In the second system, a shorter peptide consisting of 12 arginine residues was co-crystallized with insulin in order to reduce the flexibility and thereby improve the electron density of the peptide. Both systems yielded data to a significantly higher resolution than obtained previously. In addition, a third system was analyzed where crystals of insulin and protamine were grown in the absence of urea, with conditions closely resembling the pharmaceutical formulation. Data from these NPH microcrystals could for the first time be collected to 2.2 angstrom resolution at a micro focused X-ray beamline. Analysis of all three crystal forms reveal potential protamine density located close to the solvent channel leading to the centrally located zinc atoms in the insulin hexamer and support that protamine binds to insulin in a not well defined conformation. (c) 2007 Elsevier B.V. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy