SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hubbard Alun) "

Sökning: WFRF:(Hubbard Alun)

  • Resultat 1-18 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Doyle, Samuel H., et al. (författare)
  • Amplified melt and flow of the Greenland ice sheet driven by late-summer cyclonic rainfall
  • 2015
  • Ingår i: Nature Geoscience. - 1752-0894 .- 1752-0908. ; 8:8, s. 647-
  • Tidskriftsartikel (refereegranskat)abstract
    • Intense rainfall events significantly affect Alpine and Alaskan glaciers through enhanced melting, ice-flow acceleration and subglacial sediment erosion, yet their impact on the Greenland ice sheet has not been assessed. Here we present measurements of ice velocity, subglacial water pressure and meteorological variables from the western margin of the Greenland ice sheet during a week of warm, wet cyclonic weather in late August and early September 2011. We find that extreme surface runoff from melt and rainfall led to a widespread acceleration in ice flow that extended 140 km into the ice-sheet interior. We suggest that the late-season timing was critical in promoting rapid runoff across an extensive bare ice surface that overwhelmed a subglacial hydrological system in transition to a less-efficient winter mode. Reanalysis data reveal that similar cyclonic weather conditions prevailed across southern and western Greenland during this time, and we observe a corresponding ice-flow response at all land- and marine-terminating glaciers in these regions for which data are available. Given that the advection of warm, moist air masses and rainfall over Greenland is expected to become more frequent in the coming decades, our findings portend a previously unforeseen vulnerability of the Greenland ice sheet to climate change.
  •  
2.
  • Doyle, Samuel H., et al. (författare)
  • Persistent flow acceleration within the interior of the Greenland ice sheet
  • 2014
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 41:3, s. 899-905
  • Tidskriftsartikel (refereegranskat)abstract
    • We present surface velocity measurements from a high-elevation site located 140km from the western margin of the Greenland ice sheet, and similar to 50km into its accumulation area. Annual velocity increased each year from 51.780.01myr(-1) in 2009 to 52.920.01myr(-1) in 2012a net increase of 2.2%. These data also reveal a strong seasonal velocity cycle of up to 8.1% above the winter mean, driven by seasonal melt and supraglacial lake drainage. Sole et al. (2013) recently argued that ice motion in the ablation area is mediated by reduced winter flow following the development of efficient subglacial drainage during warmer, faster, summers. Our data extend this analysis and reveal a year-on-year increase in annual velocity above the equilibrium line altitude, where despite surface melt increasing, it is still sufficiently low to hinder the development of efficient drainage under thick ice. Key Points Ice flow in the accumulation area accelerated year-on-year between 2009 and 2012 The acceleration correlates with the inland expansion of supraglacial lakes This dynamic response contrasts with observations from the ablation zone
  •  
3.
  • Charalampidis, Charalampos, 1983-, et al. (författare)
  • Changing surface-atmosphere energy exchange and refreezing capacity of the lower accumulation area, West Greenland
  • 2015
  • Ingår i: The Cryosphere. - : Copernicus GmbH. - 1994-0416 .- 1994-0424. ; 9:6, s. 2163-2181
  • Tidskriftsartikel (refereegranskat)abstract
    • We present 5 years (2009-2013) of automatic weather station measurements from the lower accumulation area (1840 m a.s.l. - above sea level) of the Greenland ice sheet in the Kangerlussuaq region. Here, the summers of 2010 and 2012 were both exceptionally warm, but only 2012 resulted in a strongly negative surface mass budget (SMB) and surface meltwater run-off. The observed run-off was due to a large ice fraction in the upper 10 m of firn that prevented meltwater from percolating to available pore volume below. Analysis reveals an anomalously low 2012 summer-averaged albedo of 0.71 (typically similar to 0.78), as meltwater was present at the ice sheet surface. Consequently, during the 2012 melt season, the ice sheet surface absorbed 28% (213 MJ m-2) more solar radiation than the average of all other years. A surface energy balance model is used to evaluate the seasonal and interannual variability of all surface energy fluxes. The model reproduces the observed melt rates as well as the SMB for each season. A sensitivity analysis reveals that 71% of the additional solar radiation in 2012 was used for melt, corresponding to 36% (0.64 m) of the 2012 surface lowering. The remaining 64% (1.14 m) of surface lowering resulted from high atmospheric temperatures, up to a + 2.6 degrees C daily average, indicating that 2012 would have been a negative SMB year at this site even without the melt-albedo feedback. Longer time series of SMB, regional temperature, and remotely sensed albedo (MODIS) show that 2012 was the first strongly negative SMB year, with the lowest albedo, at this elevation on record. The warm conditions of recent years have resulted in enhanced melt and reduction of the refreezing capacity in the lower accumulation area. If high temperatures continue, the current lower accumulation area will turn into a region with superimposed ice in coming years.
  •  
4.
  • Doyle, Sam H, et al. (författare)
  • Ice tectonic deformation during the rapid in situ drainage of a supraglacial lake on the Greenland Ice Sheet
  • 2013
  • Ingår i: The Cryosphere. - : Copernicus GmbH. - 1994-0416 .- 1994-0424. ; 7:1, s. 129-140
  • Tidskriftsartikel (refereegranskat)abstract
    • We present detailed records of lake discharge, ice motion and passive seismicity capturing the behaviour and processes preceding, during and following the rapid drainage of a 4 km2 supraglacial lake through 1.1-km-thick ice on the western margin of the Greenland Ice Sheet. Peak discharge of 3300 m3 s−1 coincident with maximal rates of vertical uplift indicates that surface water accessed the ice–bed interface causing widespread hydraulic separation and enhanced basal motion. The differential motion of four global positioning system (GPS) receivers located around the lake record the opening and closure of the fractures through which the lake drained. We hypothesise that the majority of discharge occurred through a 3-km-long fracture with a peak width averaged across its wetted length of 0.4 m. We argue that the fracture's kilometre-scale length allowed rapid discharge to be achieved by combining reasonable water velocities with sub-metre fracture widths. These observations add to the currently limited knowledge of in situ supraglacial lake drainage events, which rapidly deliver large volumes of water to the ice–bed interface.
  •  
5.
  • Hall, Adrian M., et al. (författare)
  • Early and Middle Pleistocene environments, landforms and sediments in Scotland
  • 2019
  • Ingår i: Earth and environmental science transactions of the Royal Society of Edinburgh. - 1755-6910 .- 1755-6929. ; 110:1-2, s. 5-37
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper reviews the changing environments, developing landforms and terrestrial stratigraphy during the Early and Middle Pleistocene stages in Scotland. Cold stages after 2.7 Ma brought mountain ice caps and lowland permafrost, but larger ice sheets were short-lived. The late Early and Middle Pleistocene sedimentary record found offshore indicates more than 10 advances of ice sheets from Scotland into the North Sea but only 4-5 advances have been identified from the terrestrial stratigraphy. Two primary modes of glaciation, mountain ice cap and full ice sheet modes, can be recognised. Different zones of glacial erosion in Scotland reflect this bimodal glaciation and the spatially and temporally variable dynamics at glacier beds. Depths of glacial erosion vary from almost zero in Buchan to hundreds of metres in glens in the western Highlands and in basins both onshore and offshore. The presence of tors and blockfields indicates repeated development of patches of cold-based, non-erosive glacier ice on summits and plateaux. In lowlands, chemical weathering continued to operate during interglacials, but gruss-type saprolites are mainly of Pliocene to Early Pleistocene age. The Middle Pleistocene terrestrial stratigraphic record in Scotland, whilst fragmentary and poorly dated, provides important and accessible evidence of changing glacial, periglacial and interglacial environments over at least three stadial-interstadial-interglacial cycles. The distributions of blockfields and tors and the erratic contents of glacial sediments indicate that the configuration, thermal regime and pattern of ice flow during MIS 6 were broadly comparable to those of the last ice sheet. Improved control over the ages of Early and Middle Pleistocene sediments, soils and saprolites and on long-term rates of weathering and erosion, combined with information on palaeoenvironments, ice extent and sea level, will in future allow development and testing of new models of Pleistocene tectonics, isostasy, sea-level change and ice sheet dynamics in Scotland.
  •  
6.
  • Heyman, Jakob, et al. (författare)
  • Glacier mass balance modelling of the Tibetan Plateau – mesh dependence issues
  • 2008
  • Konferensbidrag (refereegranskat)abstract
    • The Tibetan Plateau is an extraordinary topographic feature which exerts a major impact on regional and global climate. Its glacierised mountain ranges attain extreme altitudes and represent an important water resource for more than a billion people in Asia. Understanding the past glacial history of the Tibetan Plateau therefore is important to understanding global and regional climate and glacier hydrological evolution. A regional glacier modelling study has been initiated as part of an umbrella project aiming towards reconstructing the Quaternary palaeoglaciology of the Tibetan Plateau. On the basis of field studies which includes cosmogenic exposure-age dating, it is now generally recognised that former glaciers on the Tibetan Plateau, while more extensive than today, were still restricted to individual mountain areas. In contrast, a handful of previous modelling studies (Kuhle et al. 1989; Calov & Marsiat 1998; Bintanja et al. 2002; Casal et al. 2004) yield a bifurcated result with either 1) the growth of plateau-wide ice sheets (thus overshooting field evidence) or, 2) virtually no ice (which undershoots field evidence).We apply and test a positive degree day (PDD) model across the Tibetan Plateau to explore the parameter sensitivity and potential issues of grid-dependence. Utilising the 1km mean monthly (1950 – 2000) distributions of temperature and precipitation from the WorldClim database as a contemporary reference climatology, a suite of PDD experiments are run to predict present day ice cover. At a resolution of 1 km the algorithm nicely identifies zones of positive mass balance (accumulation) across most major contemporary glaciarised areas. Unsurprisingly increased grid resolution yields a significant decrease in the predicted accumulation area with a 40 km grid completely failing to predict accumulation across the domain. Such mesh dependence with larger grid-resolutions yielding less accumulation illustrates a major flaw in large-scale, low resolution ice modelling in areas of high topographical relief where adequate sub-grid parameterisation of accumulation/flow/melt processes have not been accounted for in a meaningful manner (e.g. Marshall & Clarke 1999). The result of the 20 km resolution PDD model can be manipulated to converge by applying extreme perturbations in temperature (c. -10 K) or precipitation (c. + 8000 %) but this yields plateau-wide accumulation areas far exceeding field evidence of glaciation. Our results indicate that the bifurcation in Quaternary ice extent identified in previous ice sheet modelling studies of the Tibetan Plateau are very likely a consequence of grid-resolution related issues implicit to the models applied.ReferencesBintanja R., van de Wal R.S.W., Oerlemans J. 2002: Global ice volume variations through the last glacial cycle simulated by a 3-D ice-dynamical model. Quaternary International, 95-96, 11-23.Calov R, Marsiat I. 1998: Simulations of the Northern Hemisphere through the last glacial-interglacial cycle with a vertically integrated and a three-dimensional thermomechanical ice-sheet model coupled to a climate model. Annals of Glaciology, 27, 169-176.Casal T.G.D., Kutzbach J.E., Thompson L.G. 2004: Present And Past Ice-Sheet Mass Balance Simulations For Greenland And The Tibetan Plateau. Climate Dynamics, 23, 407-425.Kuhle M., Herterich K., Calov R. 1989: On the Ice Age Glaciation of the Tibetan Highlands and its Transformation into a 3-D Model. GeoJournal, 19, 201-206.Marshall S.J., Clarke G.K.C. 1999: Ice sheet inception: subgrid hypsometric parameterization of mass balance in an ice sheet model. Climate Dynamics, 15, 533-550.
  •  
7.
  • Heyman, Jakob, et al. (författare)
  • LGM Tibetan Plateau glaciers were not much larger than today
  • 2010
  • Ingår i: Geophysical Research Abstracts.
  • Konferensbidrag (refereegranskat)abstract
    • The Tibetan Plateau is the largest and highest elevated area on Earth with consequential impacts on regional (monsoon development) and global (CO2 sequestering) climate patterns and evolution, and with its glaciers providing meltwater for some of the largest rivers of the world. The glacial history of the Tibetan Plateau is dominantly characterized by glaciers and ice caps centered on elevated mountain regions of the plateau, as evidenced by an extensive glacial geological record. Here we present the outcome of a five year project aiming towards a palaeoglaciological reconstruction for the Bayan Har Shan region of the northeastern Tibetan Plateau. We have used remote sensing, field studies and 10Be exposure ages towards a robust reconstruction of former glaciation. Glacial landforms and sediments in Bayan Har Shan, distributed around elevated mountain areas, indicate a maximum Quaternary glaciation significantly larger than today. We have dated 40 boulders, 12 surface pebbles samples, and 15 depth profile samples (in 4 depth profiles) from 15 sites (mainly moraine ridges) using 10Be exposure dating. Our boulder and pebble exposure ages range from 3 ka to 128 ka with large age spreads within populations of individual sites. Based on the premise that cosmogenic age spreads within populations are caused by post-depositional shielding which yields exposure ages younger than deglaciation ages (see Heyman et al. Abstract/Poster in session CL4.7/GM2.4/SSP2.5/SSP3.9: EGU2010-14159-1) and based on the exposure ages of the multiple sample types, all dated glacial deposits pre-date the global Last Glacial Maximum (LGM). Our results further indicate that even the innermost and highest of the dated moraines, formed by glaciers <10 km long, have minimum deglaciation ages of 45 ka. These results agree well with those sites on the Tibetan Plateau where samples close outside present-day glacier margins have yielded exposure ages significantly older than the LGM. In fact, for sites where exposure age studies have been performed on the Tibetan Plateau, it is a rule rather than an exception with pre-LGM exposure ages close outside present-day glacier margins. This indicates that during the LGM, when large ice sheets covered North America and northern Europe, glaciers on the northeastern Tibetan Plateau, and perhaps the plateau at large, did not grow much larger than today. To explore the climate implications of restricted Tibetan Plateau LGM glaciers, we employ a high-resolution 3D glacier model forced with static climate perturbations of the present-day climate (WorldClim data:http://www.worldclim.org/). Allowing glaciers to grow and expand to but not exceed well-dated moraines enables us to derive and present climate constraints for the Tibetan Plateau during the LGM.
  •  
8.
  • Heyman, Jakob, et al. (författare)
  • Palaeoglaciology of Bayan Har Shan, NE Tibetan Plateau : exposure ages reveal a missing LGM expansion
  • 2011
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 30:15-16, s. 1988-2001
  • Tidskriftsartikel (refereegranskat)abstract
    • The Bayan Har Shan, a prominent upland area in the northeastern sector of the Tibetan Plateau, hosts an extensive glacial geological record. To reconstruct its palaeoglaciology we have determined (10)Be exposure ages based on 67 samples from boulders, surface pebbles, and sediment sections in conjunction with studies of the glacial geology (remote sensing and field studies) and numerical glacier modelling. Exposure ages from moraines and glacial sediments in Bayan Har Shan range from 3 ka to 129 ka, with a large disparity in exposure ages for individual sites and within the recognised four morphostratigraphical groups. The exposure age disparity cannot be explained by differences in inheritance without using unrealistic assumptions but it can be explained by differences in post-depositional shielding which produces exposure ages younger than the deglaciation age. We present a palaeoglaciological time-slice reconstruction in which the most restricted glaciation, with glaciers less than 10 km long, occurred before 40-65 ka. More extensive glaciations occurred before 60-100 ka and 95-165 ka. Maximum glaciation is poorly constrained but probably even older. The Bayan Hat Shan exposure age dataset indicates that glaciers on the northeastern Tibetan Plateau have remained surprisingly restricted for at least 40 ka, including the global last glacial maximum (LGM). This case of a missing LGM is further supported by high-resolution glacier modelling experiments.
  •  
9.
  • Heyman, Jakob, 1979-, et al. (författare)
  • Palaeoglaciology of Bayan Har Shan, NE Tibetan Plateau: the case of a missing LGM expansion
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The Bayan Har Shan, a prominent upland area in the northeastern sector of the Tibetan Plateau, hosts an extensive glacial geological record. To reconstruct its palaeoglaciology we have determined 10Be apparent exposure ages based on 67 samples from boulders, surface pebbles, and sediment sections in conjunction with studies of the glacial geology (remote sensing and field studies) and numerical glacier modelling. Apparent exposure ages from moraines and glacial sediments in Bayan Har Shan range from 3 ka to 129 ka, with a large disparity in ages for individual sites and within the recognised four morphostratigraphical groups. The age disparity is inexplicable as arising from differences in inheritance without the application of unrealistic assumptions but it can be explained as arising from differences in post-glacial shielding, yielding exposure ages younger than the deglaciation age. We present a palaeoglaciological time-slice reconstruction in which the most restricted glaciation, with glaciers less than 10 km long, occurred before 40-65 ka. More extensive glaciations occurred before 60-100 ka and 95-165 ka. Maximum glaciation is poorly constrained but probably even older. The Bayan Har Shan exposure age dataset indicates that glaciers on the northeastern Tibetan Plateau have remained surprisingly restricted for at least 40 ka, including the global last glacial maximum (LGM). This case of a missing LGM is supported by high-resolution glacier modelling experiments.
  •  
10.
  • Hubbard, Alun, et al. (författare)
  • Dynamic cycles, ice streams and their impact on the extent, chronology and deglaciation of the British–Irish ice sheet
  • 2009
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 28:7-8, s. 758-776
  • Tidskriftsartikel (refereegranskat)abstract
    • We present results from a suite of forward transient numerical modelling experiments of the British and Irish Ice Sheet (BIIS), consisting of Scottish, Welsh and Irish accumulation centres, spanning the last Glacial period from 38 to 10 ka BP. The 3D thermomechanical model employed uses higher-order physics to solve longitudinal (membrane) stresses and to reproduce grounding-line dynamics. Surface mass balance is derived using a distributed degree-day calculation based on a reference climatology from mean (1961–1990) precipitation and temperature patterns. The model is perturbed from this reference state by a scaled NGRIP oxygen isotope curve and the SPECMAP sea-level reconstruction. Isostatic response to ice loading is computed using an elastic lithosphere/relaxed asthenosphere scheme. A suite of 350 simulations were designed to explore the parameter space of model uncertainties and sensitivities, to yield a subset of experiments that showed close correspondence to offshore and onshore ice-directional indicators, broad BIIS chronology, and the relative sea-level record. Three of these simulations are described in further detail and indicate that the separate ice centres of the modelled BIIS complex are dynamically interdependent during the build up to maximum conditions, but remain largely independent throughout much of the simulation. The modelled BIIS is extremely dynamic, drained mainly by a number of transient but recurrent ice streams which dynamically switch and fluctuate in extent and intensity on a centennial time-scale. A series of binge/purge, advance/retreat, cycles are identified which correspond to alternating periods of relatively cold-based ice, (associated with a high aspect ratio and net growth), and wet-based ice with a lower aspect ratio, characterised by streaming. The timing and dynamics of these events are determined through a combination of basal thermomechanical switching spatially propagated and amplified through longitudinal coupling, but are modulated and phase-lagged to the oscillations within the NGRIP record of climate forcing. Phases of predominant streaming activity coincide with periods of maximum ice extent and are triggered by abrupt transitions from a cold to relatively warm climate, resulting in major iceberg/melt discharge events into the North Sea and Atlantic Ocean. The broad chronology of the modelled BIIS indicates a maximum extent at 20 ka, with fast-flowing ice across its western and northern sectors that extended to the continental shelf edge. Fast-flowing streams also dominate the Irish Sea and North Sea Basin sectors and impinge onto SW England and East Anglia. From 19 ka BP deglaciation is achieved in less than 2000 years, discharging the freshwater equivalent of 2 m global sea-level rise. A much reduced ice sheet centred on Scotland undergoes subsequent retrenchment and a series of advance/retreat cycles into the North Sea Basin from 17 ka onwards, culminating in a sustained Younger Dryas event from 13 to 11.5 ka BP. Modelled ice cover is persistent across the Western and Central Highlands until the last remnant glaciers disappear around 10.5 ka BP.
  •  
11.
  • Kulessa, Bernd, et al. (författare)
  • Seismic evidence for complex sedimentary control of Greenland Ice Sheet flow
  • 2017
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 3:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The land-terminating margin of the Greenland Ice Sheet has slowed down in recent decades, although the causes and implications for future ice flow are unclear. Explained originally by a self-regulating mechanism where basal slip reduces as drainage evolves from low to high efficiency, recent numerical modeling invokes a sedimentary control of ice sheet flow as an alternative hypothesis. Although both hypotheses can explain the recent slowdown, their respective forecasts of a long-term deceleration versus an acceleration of ice flow are contradictory. We present amplitude-versus-angle seismic data as the first observational test of the alternative hypothesis. We document transient modifications of basal sediment strengths by rapid subglacial drainages of supraglacial lakes, the primary current control on summer ice sheet flow according to our numerical model. Our observations agree with simulations of initial postdrainage sediment weakening and ice flow accelerations, and subsequent sediment restrengthening and ice flow decelerations, and thus confirm the alternative hypothesis. Although simulated melt season acceleration of ice flow due to weakening of subglacial sediments does not currently outweigh winter slowdown forced by self regulation, they could dominate over the longer term. Subglacial sediments beneath the Greenland Ice Sheet must therefore be mapped and characterized, and a sedimentary control of ice flow must be evaluated against competing self-regulation mechanisms.
  •  
12.
  • Lindbäck, Katrin, et al. (författare)
  • Subglacial water drainage, storage, and piracy beneath the Greenland Ice Sheet
  • 2015
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 42:18, s. 7606-7614
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Meltwater drainage across the surface of the Greenland Ice Sheet (GrIS) is well constrained by measurements and modeling, yet despite its critical role, knowledge of its transit through the subglacial environment remains limited. Here we present a subglacial hydrological analysis of a land-terminating sector of the GrIS at unprecedented resolution that predicts the routing of surface-derived meltwater once it has entered the basal drainage system. Our analysis indicates the probable existence of small subglacial lakes that remain undetectable by methods using surface elevation change or radar techniques. Furthermore, the analysis suggests transient behavior with rapid switching of subglacial drainage between competing catchments driven by seasonal changes in the basal water pressure. Our findings provide a cautionary note that should be considered in studies that attempt to relate and infer future response from surface temperature, melt, and runoff from point measurements and/or modeling with measurements of proglacial discharge and ice dynamics.
  •  
13.
  • Mikkelsen, Andreas Bech, et al. (författare)
  • Extraordinary runoff from the Greenland ice sheet in 2012 amplified by hypsometry and depleted firn retention
  • 2016
  • Ingår i: The Cryosphere. - : Copernicus GmbH. - 1994-0416 .- 1994-0424. ; 10:3, s. 1147-1159
  • Tidskriftsartikel (refereegranskat)abstract
    • It has been argued that the infiltration and retention of meltwater within firn across the percolation zone of the Greenland ice sheet has the potential to buffer up to similar to 3.6aEuro-mm of global sea-level rise (Harper et al., 2012). Despite evidence confirming active refreezing processes above the equilibrium line, their impact on runoff and proglacial discharge has yet to be assessed. Here, we compare meteorological, melt, firn stratigraphy and discharge data from the extreme 2010 and 2012 summers to determine the relationship between atmospheric forcing and melt runoff at the land-terminating Kangerlussuaq sector of the Greenland ice sheet, which drains into the Watson River. The 6.8aEuro-km(3) bulk discharge in 2012 exceeded that in 2010 by 28aEuro-%, despite only a 3aEuro-% difference in net incoming melt energy between the two years. This large disparity can be explained by a 10aEuro-% contribution of runoff originating from above the long-term equilibrium line in 2012 caused by diminished firn retention. The amplified 2012 response was compounded by catchment hypsometry; the disproportionate increase in area contributing to runoff as the melt-level rose high into the accumulation area. Satellite imagery and aerial photographs reveal an extensive supraglacial network extending 140aEuro-km from the ice margin that confirms active meltwater runoff originating well above the equilibrium line. This runoff culminated in three days with record discharge of 3100aEuro-m(3)aEuro-s(-1) (0.27aEuro-GtaEuro-d(-1)) that peaked on 11 July and washed out the Watson River Bridge. Our findings corroborate melt infiltration processes in the percolation zone, though the resulting patterns of refreezing are complex and can lead to spatially extensive, perched superimposed ice layers within the firn. In 2012, such layers extended to an elevation of at least 1840aEuro-m and provided a semi-impermeable barrier to further meltwater storage, thereby promoting widespread runoff from the accumulation area of the Greenland ice sheet that contributed directly to proglacial discharge and global sea-level rise.
  •  
14.
  • Napieralski, Jacob, et al. (författare)
  • Towards a GIS assessment of numerical ice sheet model performance using geomorphological data
  • 2007
  • Ingår i: Journal of Glaciology. ; 53:180, s. 71-83
  • Tidskriftsartikel (refereegranskat)abstract
    • A major difficulty in assimilating geomorphological information with ice-sheet models is the lack of a consistent methodology to systematically compare model output and field data. As an initial step in establishing a quantitative comparison methodology, automated proximity and conformity analysis (APCA) and automated flow direction analysis (AFDA) have been developed to assess the level of correspondence between modelled ice extent and ice-marginal features such as end moraines, as well as between modelled basal flow directions and palaeo-flow direction indicators, such as glacial lineations. To illustrate the potential of such an approach, an ensemble suite of 40 numerical simulations of the Fennoscandian ice sheet were compared to end moraines of the Last Glacial Maximum and the Younger Dryas and to glacial lineations in northern Sweden using APCA and AFDA. Model experiments evaluated in this manner were ranked according to level of correspondence. Such an approach holds considerable promise for optimizing the parameter space and coherence of ice-flow models by automated, quantitative assessment of multiple ensemble experiments against a database of geological or glaciological evidence.
  •  
15.
  • Patton, Henry, et al. (författare)
  • The build-up, configuration, and dynamical sensitivity of the Eurasian ice-sheet complex to Late Weichselian climatic and oceanic forcing
  • 2016
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 153, s. 97-121
  • Tidskriftsartikel (refereegranskat)abstract
    • The Eurasian ice-sheet complex (EISC) was the third largest ice mass during the Last Glacial Maximum (LGM), after the Antarctic and North American ice sheets. Despite its global significance, a comprehensive account of its evolution from independent nucleation centres to its maximum extent is conspicuously lacking. Here, a first-order, thermomechanical model, robustly constrained by empirical evidence, is used to investigate the dynamics of the EISC throughout its build-up to its maximum configuration. The ice flow model is coupled to a reference climate and applied at 10 km spatial resolution across a domain that includes the three main spreading centres of the Celtic, Fennoscandian and Barents Sea ice sheets. The model is forced with the NGRIP palaeo-isotope curve from 37 ka BP onwards and model skill is assessed against collated flowsets, marginal moraines, exposure ages and relative sea level history. The evolution of the EISC to its LGM configuration was complex and asynchronous; the western, maritime margins of the Fennoscandian and Celtic ice sheets responded rapidly and advanced across their continental shelves by 29 ka BP, yet the maximum aerial extent (5.48 x 10(6) km(2)) and volume (7.18 x 10(6) km(3)) of the ice complex was attained some 6 ka later at c. 22.7 ka BP. This maximum stand was short-lived as the North Sea and Atlantic margins were already in retreat whilst eastern margins were still advancing up until c. 20 ka BR High rates of basal erosion are modelled beneath ice streams and outlet glaciers draining the Celtic and Fennoscandian ice sheets with extensive preservation elsewhere due to frozen subglacial conditions, including much of the Barents and Kara seas. Here, and elsewhere across the Norwegian shelf and. North Sea, high pressure subglacial conditions would have promoted localised gas hydrate formation.
  •  
16.
  • Pereira Freitas, Gabriel, 1993-, et al. (författare)
  • Contribution of primary biological aerosol particles to low-level Arctic cloud condensation nuclei
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Mixed-phase clouds (MPC) are key players in the Arctic climate system due to their role in modulating solar and terrestrial radiation. Such radiative interactions critically rely on the ice content of MPC which, in turn, partly depends on the availability of ice nucleating particles (INP). INP sources and concentrations are poorly understood in the Arctic. Recently, INP active at high temperatures were linked to be primary biological aerosol particles (PBAP). Here, we investigated for a full year the PBAP abundance and variability within cloud residuals, directly sampled by a multiparameter bioaerosol spectrometer coupled to a ground-based counterflow virtual impactor inlet at the Zeppelin Observatory (475 m asl), Ny-Ålesund, Svalbard. PBAP concentrations (10−3–10−2L−1) and contributions to coarse-mode aerosol (1 in every 103–104) within cloud residuals were found to be close to those expected for concentrations of high-temperature INP. Transmission electron microscopy also confirmed the presence of PBAP, most likely bacteria, within the cloud residual samples. Seasonally, our results reveal an elevated presence of PBAP within cloud residuals during the summer. Parallel water vapor isotope measurements points towards a link between summer clouds and regionally sourced air masses. Low-level MPC were predominantly observed at the beginning and end of summer, and one explanation for their presence is the existence of high-temperature INP. In this study, we present observational evidence that PBAP might play a role in determining the phase of low-level Arctic clouds, with potential implications for the Arctic climate given ongoing changes in the hydrological and biogeochemical cycles that influence the PBAP flux in and towards the Arctic.
  •  
17.
  • Pettersson, Rickard, et al. (författare)
  • Ice thickness and basal conditions of Vestfonna ice cap, eastern Svalbard
  • 2011
  • Ingår i: Geografiska Annaler. Series A, Physical Geography. - : Informa UK Limited. - 0435-3676 .- 1468-0459. ; 93A:4, s. 311-322
  • Tidskriftsartikel (refereegranskat)abstract
    • We combined ground-based pulsed radar data collected in 20082009 with airborne radio-echo sounding data acquired in 1983 and 1986 over Vestfonna ice cap, Svalbard. The airborne dataset mainly covers the fast-flowing outlet glaciers and the marginal zone, while the ground-based data explicitly cover the interior part of the ice cap. The data presented here are thus the first complete estimate of bed topography and ice thickness. The subglacial landscape undulates with elevations between -160 and +410 m above sea level. The mean ice thickness is 186 m and the total ice area and volume are 2402 km2 and 442 +/- 0.6 km3, respectively. This is a much smaller volume than those derived from empirical volume-area scaling relationships currently used to estimate regional-to-global glacier volumes. This difference may depend on local conditions for Vestfonna and emphasizes the need to include more volume observations in the derivations of volume-area scaling parameters. We also derive basal reflectivity as a proxy for thermal conditions at the bed. Basal reflectivity values suggest that fast-flowing outlet glaciers are underlain by temperate conditions. The geometric boundaries and basal conditions for Vestfonna will be critical additions to the development of numerical models of the ice cap and to the estimation of more accurate area-volume scaling parameters.
  •  
18.
  • Shackleton, Calvin, et al. (författare)
  • Subglacial water storage and drainage beneath the Fennoscandian and Barents Sea ice sheets
  • 2018
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 201, s. 13-28
  • Tidskriftsartikel (refereegranskat)abstract
    • Subglacial hydrology modulates how ice sheets flow, respond to climate, and deliver meltwater, sediment and nutrients to proglacial and marine environments. Here, we investigate the development of subglacial lakes and drainage networks beneath the Fennoscandian and Barents Sea ice sheets over the Late Weichselian. Utilizing an established coupled climate/ice flow model, we calculate high-resolution, spatio-temporal changes in subglacial hydraulic potential from ice sheet build-up (similar to 37 ka BP) to complete deglaciation (similar to 10 ka BP). Our analysis predicts up to 3500 potential subglacial lakes, the largest of which was 658 km(2), and over 70% of which had surface areas <10 km(2), comparable with subglacial lake size distributions beneath the Antarctic Ice Sheet. Asynchronous evolution of the Fennoscandian Ice Sheet into the flatter relief of northeast Europe affected patterns of subglacial drainage, with up to 100 km(3) more water impounded within subglacial lakes during ice build-up compared to retreat. Furthermore, we observe frequent fill/drain cycles within clusters of subglacial lakes at the onset zones and margins of ice streams that would have affected their dynamics. Our results resonate with mapping of large subglacial channel networks indicative of high-discharge meltwater drainage through the Gulf of Bothnia and central Barents Sea. By tracking the migration of meltwater drainage outlets during deglaciation, we constrain locations most susceptible to focussed discharge, including the western continental shelf-break where subglacial sediment delivery led to the development of major trough mouth fans. Maps of hydraulic potential minima that persist throughout the Late Weichselian reveal potential sites for preserved subglacial lake sediments, thereby defining useful targets for further field investigation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-18 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy