SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hulsmann Lisa) "

Sökning: WFRF:(Hulsmann Lisa)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Büntgen, Ulf, et al. (författare)
  • Horn growth variation and hunting selection of the Alpine ibex
  • 2018
  • Ingår i: Journal of Animal Ecology. - : Wiley. - 0021-8790 .- 1365-2656. ; 87:4, s. 1069-1079
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Selective hunting can affect demographic characteristics and phenotypic traits of the targeted species. Hunting systems often involve harvesting quotas based on sex, age and/or size categories to avoid selective pressure. However, it is difficult to assess whether such regulations deter hunters from targeting larger trophy animals with longer horns that may have evolutionary consequences.2. Here, we compile 44,088 annually resolved and absolutely dated measurements of Alpine ibex (Capra ibex) horn growth increments from 8,355 males, harvested between 1978 and 2013, in the eastern Swiss Canton of Grisons. We aim to determine whether male ibex with longer horns were preferentially targeted, causing animals with early rapid horn growth to have shorter lives, and whether such hunting selection translated into long-term trends in horn size over the past four decades.3. Results show that medium-to longer-horned adult males had a higher probability of being harvested than shorter-horned individuals of the same age and that regulations do affect the hunters' behaviour. Nevertheless, phenotypic traits such as horn length, as well as body size and weight, remained stable over the study period.4. Although selective trophy hunting still occurs, it did not cause a measurable evolutionary response in Grisons' Alpine ibex populations; managed and surveyed since 1978. Nevertheless, further research is needed to understand whether phenotypic trait development is coinfluenced by other, potentially compensatory factors that may possibly mask the effects of selective, long-term hunting pressure.
  •  
2.
  • Hellmann, Lena, et al. (författare)
  • Diverse growth trends and climate responses across Eurasia's boreal forest
  • 2016
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 11:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The area covered by boreal forests accounts for similar to 16% of the global and 22% of the Northern Hemisphere landmass. Changes in the productivity and functioning of this circumpolar biome not only have strong effects on species composition and diversity at regional to larger scales, but also on the Earth's carbon cycle. Although temporal inconsistency in the response of tree growth to temperature has been reported from some locations at the higher northern latitudes, a systematic dendroecological network assessment is still missing for most of the boreal zone. Here, we analyze the geographical patterns of changes in summer temperature and precipitation across northern Eurasia >60 degrees N since 1951 AD, as well as the growth trends and climate responses of 445 Pinus, Larix and Picea ring width chronologies in the same area and period. In contrast to widespread summer warming, fluctuations in precipitation and tree growth are spatially more diverse and overall less distinct. Although the influence of summer temperature on ring formation is increasing with latitude and distinct moisture effects are restricted to a few southern locations, growth sensitivity to June-July temperature variability is only significant at 16.6% of all sites (p <= 0.01). By revealing complex climate constraints on the productivity of Eurasia's northern forests, our results question the a priori suitability of boreal tree-ring width chronologies for reconstructing summer temperatures. This study further emphasizes regional climate differences and their role on the dynamics of boreal ecosystems, and also underlines the importance of free data access to facilitate the compilation and evaluation of massively replicated and updated dendroecological networks.
  •  
3.
  • Hülsmann, Lisa, et al. (författare)
  • Latitudinal patterns in stabilizing density dependence of forest communities
  • 2024
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 627, s. 564-571
  • Tidskriftsartikel (refereegranskat)abstract
    • Numerous studies have shown reduced performance in plants that are surrounded by neighbours of the same species1,2, a phenomenon known as conspecific negative density dependence (CNDD)3. A long-held ecological hypothesis posits that CNDD is more pronounced in tropical than in temperate forests4,5, which increases community stabilization, species coexistence and the diversity of local tree species6,7. Previous analyses supporting such a latitudinal gradient in CNDD8,9 have suffered from methodological limitations related to the use of static data10–12. Here we present a comprehensive assessment of latitudinal CNDD patterns using dynamic mortality data to estimate species-site-specific CNDD across 23 sites. Averaged across species, we found that stabilizing CNDD was present at all except one site, but that average stabilizingCNDD was not stronger toward the tropics. However, in tropical tree communities, rare and intermediate abundant species experienced stronger stabilizing CNDD than did common species. This pattern was absent in temperate forests, which suggests that CNDD influences species abundances more strongly in tropical forests than it does in temperate ones13. We also found that interspecific variation in CNDD, which might attenuate its stabilizing effect on species diversity14,15, was high but not significantly different across latitudes. Although the consequences of these patterns for latitudinal diversity gradients are difficult to evaluate, we speculate that a more effective regulation of population abundances could translate into greater stabilization of tropical tree communities and thus contribute to the high local diversity of tropical forests.
  •  
4.
  • Leite, Melina de Souza, et al. (författare)
  • Major axes of variation in tree demography across global forests
  • 2024
  • Ingår i: Ecography. - 0906-7590 .- 1600-0587.
  • Tidskriftsartikel (refereegranskat)abstract
    • The future trajectory of global forests is closely intertwined with tree demography, and a major fundamental goal in ecology is to understand the key mechanisms governing spatio-temporal patterns in tree population dynamics. While previous research has made substantial progress in identifying the mechanisms individually, their relative importance among forests remains unclear mainly due to practical limitations. One approach to overcome these limitations is to group mechanisms according to their shared effects on the variability of tree vital rates and quantify patterns therein. We developed a conceptual and statistical framework (variance partitioning of Bayesian multilevel models) that attributes the variability in tree growth, mortality, and recruitment to variation in species, space, and time, and their interactions – categories we refer to as organising principles (OPs). We applied the framework to data from 21 forest plots covering more than 2.9 million trees of approximately 6500 species. We found that differences among species, the species OP, proved a major source of variability in tree vital rates, explaining 28–33% of demographic variance alone, and 14–17% in interaction with space, totalling 40–43%. Our results support the hypothesis that the range of vital rates is similar across global forests. However, the average variability among species declined with species richness, indicating that diverse forests featured smaller interspecific differences in vital rates. Moreover, decomposing the variance in vital rates into the proposed OPs showed the importance of unexplained variability, which includes individual variation, in tree demography. A focus on how demographic variance is organized in forests can facilitate the construction of more targeted models with clearer expectations of which covariates might drive a vital rate. This study therefore highlights the most promising avenues for future research, both in terms of understanding the relative contributions of groups of mechanisms to forest demography and diversity, and for improving projections of forest ecosystems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy