SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hultström Michael) "

Sökning: WFRF:(Hultström Michael)

  • Resultat 1-50 av 167
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Zhou, Sirui, et al. (författare)
  • A Neanderthal OAS1 isoform protects individuals of European ancestry against COVID-19 susceptibility and severity
  • 2021
  • Ingår i: Nature Medicine. - : Springer Nature. - 1078-8956 .- 1546-170X. ; 27:4, s. 659-667
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify circulating proteins influencing Coronavirus Disease 2019 (COVID-19) susceptibility and severity, we undertook a two-sample Mendelian randomization (MR) study, rapidly scanning hundreds of circulating proteins while reducing bias due to reverse causation and confounding. In up to 14,134 cases and 1.2 million controls, we found that an s.d. increase in OAS1 levels was associated with reduced COVID-19 death or ventilation (odds ratio (OR) = 0.54, P = 7 × 10−8), hospitalization (OR = 0.61, P = 8 × 10−8) and susceptibility (OR = 0.78, P = 8 × 10−6). Measuring OAS1 levels in 504 individuals, we found that higher plasma OAS1 levels in a non-infectious state were associated with reduced COVID-19 susceptibility and severity. Further analyses suggested that a Neanderthal isoform of OAS1 in individuals of European ancestry affords this protection. Thus, evidence from MR and a case–control study support a protective role for OAS1 in COVID-19 adverse outcomes. Available pharmacological agents that increase OAS1 levels could be prioritized for drug development.
  •  
3.
  • Fähling, Michael, et al. (författare)
  • NFAT5 regulates renal gene expression in response to angiotensin II through Annexin-A2-mediated posttranscriptional regulation in hypertensive rats
  • 2019
  • Ingår i: American Journal of Physiology - Renal Physiology. - : American Physiological Society. - 1931-857X .- 1522-1466. ; 316:1, s. F101-F112
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim was to identify new targets that regulate gene expression at the posttranscriptional level in angiotensin II (ANGII)-mediated hypertension. Heparin affinity chromatography was used to enrich nucleic acid-binding proteins from kidneys of two-kidney, one-clip (2K1C) hypertensive Wistar rats. The experiment was repeated with 14-day ANGII infusion using Alzet osmotic mini pumps. with or without ANGII receptor AT1a inhibition using losartan in the drinking water. Mean arterial pressure increased after 2K1C or ANGII infusion and was inhibited with losartan. Heparin affinity chromatography and mass spectrometry were used to identify Annexin-A2 (ANXA2) as having differential nucleic acid-binding activity. Total Annexin-A2 protein expression was unchanged, whereas nucleic acid-binding activity was increased in both kidneys of 2K1C and after ANGII infusion through AT1a stimulation. Costaining of Annexin-A2 with alpha-smooth muscle actin and aquaporin 2 showed prominent expression in the endothelia of larger arteries and the cells of the inner medullary collecting duct. The nuclear factor of activated T cells (NFAT) transcription factor was identified as a likely Annexin-A2 target using enrichment analysis on a 2K1C microarray data set and identifying several binding sites in the regulatory region of the mRNA. Expression analysis showed that ANGII increases NFAT5 protein but not mRNA level and, thus, indicated that NFAT5 is regulated by posttranscriptional regulation, which correlates with activation of the RNA-binding protein Annexin-A2. In conclusion, we show that ANGII increases Annexin-A2 nucleic acid-binding activity that correlates with elevated protein levels of the NFAT5 transcription factor. NFAT signaling appears to be a major contributor to renal gene regulation in high-renin states.
  •  
4.
  •  
5.
  •  
6.
  • Lai, En Yin, et al. (författare)
  • Norepinephrine increases calcium sensitivity of mouse afferent arteriole, thereby enhancing angiotensin II-mediated vasoconstriction
  • 2009
  • Ingår i: Kidney International. - : Elsevier BV. - 0085-2538 .- 1523-1755. ; 76:9, s. 953-959
  • Tidskriftsartikel (refereegranskat)abstract
    • Many agents constrict isolated afferent arterioles only at concentrations higher than their physiological levels. Here we determined if norepinephrine, as released by sympathetic nerve activity, could influence the angiotensin II responsiveness of isolated mouse afferent arterioles. Pretreatment of the arterioles for short periods with norepinephrine significantly increased the ability of 10 picomolar angiotensin II to constrict the vessels, an effect inhibited by the alpha receptor blockers prazosin (alpha-1) or yohimbine (alpha-2). Although the intracellular calcium transients induced by angiotensin were not different, phosphorylation of the 20 kDa myosin light chain was significantly increased in the presence of norepinephrine. Phosphorylation of the p38 mitogen-activated protein kinase was not changed. Phosphorylation of the myosin phosphatase targeting subunit at Thr696, but not at Thr850, was significantly enhanced by, norepinephrine pretreatment, thus increasing the calcium sensitivity of the arteriolar smooth muscle. Our results show that norepinephrine increases afferent arteriolar sensitivity to angiotensin II by means of alpha receptor activation, causing increased calcium sensitivity through phosphorylation of the myosin phosphatase targeting subunit. Kidney International (2009) 76, 953-959; doi:10.1038/ki.2009.261; published online 22 July 2009
  •  
7.
  •  
8.
  • Ahlström, Björn, et al. (författare)
  • A comparison of impact of comorbidities and demographics on 60-day mortality in ICU patients with COVID-19, sepsis and acute respiratory distress syndrome
  • 2022
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Severe Coronavirus disease 2019 (COVID-19) is associated with several pre-existing comorbidities and demographic factors. Similar factors are linked to critical sepsis and acute respiratory distress syndrome (ARDS). We hypothesized that age and comorbidities are more generically linked to critical illness mortality than a specific disease state. We used national databases to identify ICU patients and to retrieve comorbidities. The relative importance of risk factors for 60-day mortality was evaluated using the interaction with disease group (Sepsis, ARDS or COVID-19) in logistic regression models. We included 32,501 adult ICU patients. In the model on 60-day mortality in sepsis and COVID-19 there were significant interactions with disease group for age, sex and asthma. In the model on 60-day mortality in ARDS and COVID-19 significant interactions with cohort were found for acute disease severity, age and chronic renal failure. In conclusion, age and sex play particular roles in COVID-19 mortality during intensive care but the burden of comorbidity was similar between sepsis and COVID-19 and ARDS and COVID-19.
  •  
9.
  •  
10.
  • Ahlström, Björn, et al. (författare)
  • The swedish covid-19 intensive care cohort : Risk factors of ICU admission and ICU mortality
  • 2021
  • Ingår i: Acta Anaesthesiologica Scandinavica. - : John Wiley & Sons. - 0001-5172 .- 1399-6576. ; 65:4, s. 525-533
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Several studies have recently addressed factors associated with severe Coronavirus disease 2019 (COVID-19); however, some medications and comorbidities have yet to be evaluated in a large matched cohort. We therefore explored the role of relevant comorbidities and medications in relation to the risk of intensive care unit (ICU) admission and mortality.Methods: All ICU COVID-19 patients in Sweden until 27 May 2020 were matched to population controls on age and gender to assess the risk of ICU admission. Cases were identified, comorbidities and medications were retrieved from high-quality registries. Three conditional logistic regression models were used for risk of ICU admission and three Cox proportional hazards models for risk of ICU mortality, one with comorbidities, one with medications and finally with both models combined, respectively.Results: We included 1981 patients and 7924 controls. Hypertension, type 2 diabetes mellitus, chronic renal failure, asthma, obesity, being a solid organ transplant recipient and immunosuppressant medications were independent risk factors of ICU admission and oral anticoagulants were protective. Stroke, asthma, chronic obstructive pulmonary disease and treatment with renin-angiotensin-aldosterone inhibitors (RAASi) were independent risk factors of ICU mortality in the pre-specified primary analyses; treatment with statins was protective. However, after adjusting for the use of continuous renal replacement therapy, RAASi were no longer an independent risk factor.Conclusion: In our cohort oral anticoagulants were protective of ICU admission and statins was protective of ICU death. Several comorbidities and ongoing RAASi treatment were independent risk factors of ICU admission and ICU mortality.
  •  
11.
  • Antoni, Gunnar, et al. (författare)
  • In Vivo Visualization and Quantification of Neutrophil Elastase in Lungs of COVID-19 Patients : A First-in-Humans PET Study with 11C-NES
  • 2023
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 64:1, s. 145-148
  • Tidskriftsartikel (refereegranskat)abstract
    • COVID-19 can cause life-threatening lung-inflammation that is suggested to be mediated by neutrophils, whose effector mechanisms in COVID-19 is inexplicit. The aim of the present work is to evaluate a novel PET tracer for neutrophil elastase in COVID-19 patients and healthy controls.METHODS: In this open-label, First-In-Man study, four patients with hypoxia due to COVID-19 and two healthy controls were investigated with positron emission tomography (PET) using the new selective and specific neutrophil elastase PET-tracer [11C]GW457427 and [15O]water for the visualization and quantification of NE and perfusion in the lungs, respectively.RESULTS: [11C]GW457427 accumulated selectively in lung areas with ground-glass opacities on computed tomography characteristic of COVID-19 suggesting high levels on NE in these areas. In the same areas perfusion was severely reduced in comparison to healthy lung tissue as measured with [15O]water.CONCLUSION: The data suggests that NE may be responsible for the severe lung inflammation in COVID-19 patients and that inhibition of NE could potentially reduce the acute inflammatory process and improve the condition.
  •  
12.
  • Asif, Sana, M.D, PhD student, et al. (författare)
  • Immuno-Modulatory Effects of Dexamethasone in Severe COVID-19 : A Swedish Cohort Study
  • 2023
  • Ingår i: Biomedicines. - : MDPI. - 2227-9059. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Dexamethasone (Dex) has been shown to decrease mortality in severe coronavirus disease 2019 (COVID-19), but the mechanism is not fully elucidated. We aimed to investigate the physiological and immunological effects associated with Dex administration in patients admitted to intensive care with severe COVID-19. A total of 216 adult COVID-19 patients were included-102 (47%) received Dex, 6 mg/day for 10 days, and 114 (53%) did not. Standard laboratory parameters, plasma expression of cytokines, endothelial markers, immunoglobulin (Ig) IgA, IgM, and IgG against SARS-CoV-2 were analyzed post-admission to intensive care. Patients treated with Dex had higher blood glucose but lower blood lactate, plasma cortisol, IgA, IgM, IgG, D-dimer, cytokines, syndecan-1, and E-selectin and received less organ support than those who did not receive Dex (Without-Dex). There was an association between Dex treatment and IL-17A, macrophage inflammatory protein 1 alpha, syndecan-1 as well as E-selectin in predicting 30-day mortality. Among a subgroup of patients who received Dex early, within 14 days of COVID-19 debut, the adjusted mortality risk was 0.4 (95% CI 0.2-0.8), i.e., 40% compared with Without-Dex. Dex administration in a cohort of critically ill COVID-19 patients resulted in altered immunological and physiologic responses, some of which were associated with mortality.
  •  
13.
  • Asif, Sana, M.D, PhD student, et al. (författare)
  • Plasma endostatin correlates with hypoxia and mortality in COVID-19-associated acute respiratory failure
  • 2021
  • Ingår i: Biomarkers in Medicine. - : Future Medicine. - 1752-0363 .- 1752-0371. ; 15:16, s. 1509-1517
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The contribution of endothelial injury in the pathogenesis of COVID-19-associated acute respiratory distress syndrome (ARDS) and resulting respiratory failure remains unclear. Plasma endostatin, an endogenous inhibitor of angiogenesis and endothelial dysfunction is upregulated during hypoxia, inflammation and progress of pulmonary disease.Aim: To investigate if plasma endostatin is associated to hypoxia, inflammation and 30-day mortality in patients with severe COVID-19 infection.Method: Samples for blood analysis and plasma endostatin quantification were collected from adult patients with ongoing COVID-19 (n = 109) on admission to intensive care unit (day 1). Demographic characteristics and 30-day mortality data were extracted from medical records. The ability of endostatin to predict mortality was analyzed using receiving operating characteristics and Kaplan-Meier analysis with a cutoff at 46.2 ng/ml was used to analyze the association to survival.Results: Plasma endostatin levels correlated with; PaO2/FiO2 (r = -0.3, p < 0.001), arterial oxygen tension (r = -0.2, p = 0.01), lactate (r = 0.2, p = 0.04), C-reactive protein (r = 0.2, p = 0.04), ferritin (r = 0.2, p = 0.09), D-dimer (r = 0.2, p = 0.08) and IL-6 (r = 0.4, p < 0.001). Nonsurvivors at 30 days had higher plasma endostatin levels than survivors (72 ± 26 vs 56 ± 16 ng/ml, p = 0.01). Receiving operating characteristic curve (area under the curve 0.7) showed that plasma endostatin >46.2 ng/ml predicts mortality with a sensitivity of 92% and specificity of 71%. In patients with plasma endostatin >46.2 ng/ml probability of survival was lower (p = 0.02) in comparison to those with endostatin <46.2 ng/ml.Conclusion: Our results suggest that plasma endostatin is an early biomarker for disease severity in COVID-19.
  •  
14.
  •  
15.
  • Bark, Lovisa, et al. (författare)
  • Central nervous system biomarkers GFAp and NfL associate with post-acute cognitive impairment and fatigue following critical COVID-19.
  • 2023
  • Ingår i: Scientific reports. - : Springer Nature. - 2045-2322. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A high proportion of patients with coronavirus disease 2019 (COVID-19) experience post-acute COVID-19, including neuropsychiatric symptoms. Objective signs of central nervous system (CNS) damage can be investigated using CNS biomarkers such as glial fibrillary acidic protein (GFAp), neurofilament light chain (NfL) and total tau (t-tau). We have examined whether CNS biomarkers can predict fatigue and cognitive impairment 3-6months after discharge from the intensive care unit (ICU) in critically ill COVID-19 patients. Fifty-seven COVID-19 patients admitted to the ICU were included with analysis of CNS biomarkers in blood at the ICU and at follow up. Cognitive dysfunction and fatigue were assessed with the Montreal Cognitive Assessment (MoCA) and the Multidimensional Fatigue inventory (MFI-20). Elevated GFAp at follow-up 3-6months after ICU discharge was associated to the development of mild cognitive dysfunction (p=0.01), especially in women (p=0.005). Patients who experienced different dimensions of fatigue at follow-up had significantly lower GFAp in both the ICU and at follow-up, specifically in general fatigue (p=0.009), physical fatigue (p=0.004), mental fatigue (p=0.001), and reduced motivation (p=0.001). Women showed a more pronounced decrease in GFAp compared to men, except for in mental fatigue where men showed a more pronounced GFAp decrease compared to women. NfL concentration at follow-up was lower in patients who experienced reduced motivation (p=0.004). Our findings suggest that GFAp and NfL are associated with neuropsychiatric outcome after critical COVID-19.Trial registration The study was registered à priori (clinicaltrials.gov: NCT04316884 registered on 2020-03-13 and NCT04474249 registered on 2020-06-29).
  •  
16.
  • Becirovic Agic, Mediha, et al. (författare)
  • Quantitative trait loci associated with angiotensin II and high-salt diet induced acute decompensated heart failure in Balb/CJ mice
  • 2019
  • Ingår i: Physiological Genomics. - : AMER PHYSIOLOGICAL SOC. - 1094-8341 .- 1531-2267. ; 51:7, s. 279-289
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic background of different mouse strains determines their susceptibility to disease. We have previously shown that Balb/CJ and C57BL/6J mice develop cardiac hypertrophy to the same degree when treated with a combination of angiotensin II and high-salt diet (ANG II+ Salt). but only Balb/CJ show impaired cardiac function associated with edema development and substantial mortality. We hypothesized that the different response to ANG II +Salt is due to the different genetic backgrounds of Balb/CJ and C57BL/6J. To address this we performed quantitative trait locus (QTL) mapping of second filial generation (F2) of mice derived from a backcross between Balb/CJ and first filial generation (Fl) of mice. Cardiac function was measured with echocardiography, glomerular filtration rate using FITC-inulin clearance, fluid and electrolyte balance in metabolic cages, and blood pressure with tail-cuff at baseline and on the fourth day of treatment with ANG II+Salt. A total of nine QTLs were found to be linked to different phenotypes in ANG II + Salt-treated F2 mice. A QTL on chromosome 3 was linked to cardiac output. and a QTL on chromosome 12 was linked to isovolumic relaxation time. QTLs on chromosome 2 and 3 were linked to urine excretion and sodium excretion. Eight genes located at the different QTLs contained coding nonsynonymous SNPs published in the mouse genome database that differ between Balb/CJ and C57BL/6J. In conclusion. ANG II+Salt-induced acute decompensation in Balb/CJ is genetically linked to several QTLs, indicating a multifaceted phenotype. The present study identified potential candidate genes that may represent important pathways in acute decompensated heart failure.
  •  
17.
  •  
18.
  • Becirovic-Agic, Mediha, et al. (författare)
  • Time course of decompensation after angiotensin II and high-salt diet in Balb/CJ mice suggests pulmonary hypertension-induced cardiorenal syndrome
  • 2019
  • Ingår i: American Journal of Physiology. Regulatory Integrative and Comparative Physiology. - : the American Physiological Society. - 0363-6119 .- 1522-1490. ; 316:5, s. R563-R570
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetic background of a mouse strain determines its susceptibility to disease. C57BL/6J and Balb/CJ are two widely used inbred mouse strains that we found react dramatically differently to angiotensin II and high-salt diet (ANG II + Salt). Balb/CJ show increased mortality associated with anuria and edema formation while C57BL/6J develop arterial hypertension but do not decompensate and die. Clinical symptoms of heart failure in Balb/CJ mice gave the hypothesis that ANG II + Salt impairs cardiac function and induces cardiac remodeling in male Balb/CJ but not in male C57BL/6J mice. To test this hypothesis, we measured cardiac function using echocardiography before treatment and every day for 7 days during treatment with ANG II + Salt. Interestingly, pulsed wave Doppler of pulmonary artery flow indicated increased pulmonary vascular resistance and right ventricle systolic pressure in Balb/CJ mice, already 24 h after ANG II + Salt treatment was started. In addition, Balb/CJ mice showed abnormal diastolic filling indicated by reduced early and late filling and increased isovolumic relaxation time. Furthermore, Balb/CJ exhibited lower cardiac output compared with C57BL/6J even though they retained more sodium and water, as assessed using metabolic cages. Left posterior wall thickness increased during ANG II + Salt treatment but did not differ between the strains. In conclusion, ANG II + Salt treatment causes early restriction of pulmonary flow and reduced left ventricular filling and cardiac output in Balb/CJ, which results in fluid retention and peripheral edema. This makes Balb/CJ a potential model to study the adaptive capacity of the heart for identifying new disease mechanisms and drug targets.
  •  
19.
  •  
20.
  • Becriovic-Agic, Mediha (författare)
  • Susceptibility to Acute Decompensated Heart Failure in Two Common Mouse Strains
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Heart failure is a clinical syndrome characterized by an inability of the heart to meet oxygen demands of the body. During the initial stage of heart failure development compensatory mechanisms are activated to help the heart sustain proper function. Over time these compensatory mechanisms become inadequate resulting in decompensation. Acute decompensated heart failure is characterized by rapidly escalating heart failure symptoms, such as dyspnea and congestion, which require urgent treatment. The pathophysiology of decompensation and role of genetic background on this process is not completely understood.  The aim of this thesis was to investigate the role of genetic background on susceptibility to develop acute decompensated heart failure.Balb/CJ and C57BL/6J mice are two common mouse strains that we found have different susceptibility to angiotensin II and high-salt diet (AngII+Salt) induced decompensation. Balb/CJ treated with AngII+Salt develop massive edema associated with anuria and high mortality within 4-6 days of treatment, while C57BL/6J mice do not. Due to the clinical symptoms of heart failure we hypothesized that Balb/CJ develop acute decompensated heart failure, and that the genetic background of this strain is responsible for the increased susceptibility to heart failure. AngII+Salt increased pulmonary and systemic vascular resistance, reduced left ventricle filling, and increased sodium and water retention in Balb/CJ mice. Increased pulmonary vascular resistance correlated with a higher angiotensin II response in isolated pulmonary arteries from Balb/CJ compared to C57BL/6J. Cardiac output was lower in Balb/CJ than C57BL/6J during AngII+Salt treatment even though they retained more sodium and water. This indicated that AngII+Salt impairs cardiac function in Balb/CJ mice. Oxidative stress was shown to play a role in AngII+Salt induced acute decompensation since treatment with an antioxidant reduced oxidative stress but impaired cardiac function and increased mortality in both strains. A linkage study was performed to reveal genes that are with high probability related to AngII+Salt induced decompensation in Balb/CJ mice. Quantative trait loci (QTLs) on chromosome 3 and 12 were linked to cardiac dysfunction and QTLs on chromosome 2 and 3 were linked to sodium and fluid balance. Foxo1 was found to be one of candidate genes for further study.Taken together, the data in this thesis shows that genetic background does play a large role in the development of acute decompensated heart failure. It reveals several candidate genes that could be studied in the setting of acute decompensated heart failure. Finally, it describes a new mouse model that could potentially be used for studying the pathophysiology of decompensation and identifying new drug targets.
  •  
21.
  • Berghäll, Elisabeth, et al. (författare)
  • The Evolution of Blood Cell Phenotypes, Intracellular and Plasma Cytokines and Morphological Changes in Critically Ill COVID-19 Patients
  • 2022
  • Ingår i: Biomedicines. - : MDPI AG. - 2227-9059. ; 10:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Severe coronavirus disease 2019 (COVID-19) causes a strong inflammatory response. To obtain an overview of inflammatory mediators and effector cells, we studied 25 intensive-care-unit patients during the timeframe after off-label chloroquine treatment and before an introduction of immunomodulatory drugs.Material and methods: Blood samples were weekly examined with flow cytometry (FCM) for surface and intracytoplasmic markers, cytokine assays were analyzed for circulating interleukins (ILs), and blood smears were evaluated for morphological changes. Samples from healthy volunteers were used for comparison. Organ function data and 30-day mortality were obtained from medical records.Results: Compared to that of the healthy control group, the expression levels of leukocyte surface markers, i.e., the cluster of differentiation (CD) markers CD2, CD4, CD8, CD158d, CD25, CD127, and CD19, were lower (p < 0.001), while those of leukocytes expressing CD33 were increased (p < 0.05). An aberrant expression of CD158d on granulocytes was found on parts of the granulocyte population. The expression levels of intracellular tumor necrosis factor alpha (TNF alpha) and IL-1 receptor type 2 in leukocytes were higher (p < 0.001) as well as plasma levels of TNF alpha, IL-2, IL-6, IL-8, IL-10 (p < 0.001), interferon gamma (IFN gamma) (p < 0.01), and granulocyte-macrophage colony-stimulating factor (GM-CSF) (p < 0.05). The expression levels of CD33+ leukocytes and circulating IL-6 were higher (p < 0.05) among patients with arterial oxygen partial pressure-to-fractional inspired oxygen (PaO2/FiO(2)) ratios below 13.3 kPa compared to in the remaining patients. The expression levels of TNF alpha, IL-2, IL-4, IL-6, IL-8, and IL-10 were higher in patients treated with continuous renal replacement therapy (CRRT) (p < 0.05), and the levels of the maximum plasma creatinine and TNF alpha Spearman's rank-order correlation coefficient (rho = 0.51, p < 0.05) and IL-8 (rho = 0.44, p < 0.05) correlated. Blood smears revealed neutrophil dysplasia with pseudo-Pelger forms being most common.Conclusion: These findings suggest that patients with severe COVID-19, in addition to augmented ILs, lymphopenia, and increased granulocytes, also had effects on the bone marrow.
  •  
22.
  • Bivol, Liliana Monica, et al. (författare)
  • Tetradecylthioacetic acid downregulates cyclooxygenase 2 in the renal cortex of two-kidney, one-clip hypertensive rats.
  • 2008
  • Ingår i: American Journal of Physiology. Regulatory Integrative and Comparative Physiology. - : American Physiological Society. - 0363-6119 .- 1522-1490. ; 295:6, s. R1866-73
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of tetradecylthioacetic acid (TTA) on the cyclooxygenase (COX) system was investigated in two-kidney, one-clip (2K1C) hypertensive rats. The systolic blood pressure (BP) was increased 6 wk after clipping to 183 +/- 4 vs.127 +/- 3 mmHg in TTA-treated 2K1C rats. The COX1 protein expression was not affected either by the 2K1C procedure or by TTA treatment. COX2 expression was upregulated in both kidneys, but to a greater extent in the clipped kidney. COX2 activity was 16 +/- 3% in control and 38 +/- 2% (P < 0.001) in the clipped kidney, and COX2 protein expression was 1.3 +/- 0.04 in control and 1.6 +/- 0.12 in the clipped kidney (P = 0.006). TTA reduced COX2 activity to control levels. Subcutaneously infusion of a COX2 inhibitor did not reduce BP. Peroxisome proliferator-activated receptors (PPARs) were detected in both kidneys, and PPARdelta was upregulated in the nonclipped kidney after TTA treatment. PGE2 in renal cortex was increased in 2K1C (31 +/- 0.3 in the clipped and 28 +/- 0.2 pg/ml nonclipped kidney, P < 0.001 compared with control). TTA lowered the PGE2 to control levels. Renal blood flow (RBF) response to exogenous ANG II injected in the control and nonclipped kidney was exaggerated after indomethacin treatment but unchanged in the nonclipped kidney of the K1C TTA group. Overall, these results indicate that, after 6 wk of treatment, TTA downregulated the COX2 activity, which have potentially important effects on the regulation of renal hemodynamics but does not explain TTAs ability to lower BP.
  •  
23.
  • Bivol, Liliana Monica, et al. (författare)
  • Unilateral renal ischemia in rats induces a rapid secretion of inflammatory markers to renal lymph and increased peritubular capillary permeability
  • 2016
  • Ingår i: Journal of Physiology. - : John Wiley & Sons. - 0022-3751 .- 1469-7793. ; 594:6, s. 1709-1726
  • Tidskriftsartikel (refereegranskat)abstract
    • A better understanding of the inflammatory process associated with renal ischemia-reperfusion (IR) injury may be clinically important. In this study we examined the role of the kidney in production of inflammatory mediators by analysing renal lymph after 30 min unilateral occlusion of renal artery followed by 120 min reperfusion, as well as the effect of IR on size selectivity for proteins in both glomerular and peritubular capillaries. All measured mediators increased dramatically in renal hilar lymph, whereas plasma and renal cortical tissue samples returned to control levels after 120 min reperfusion. The responses were differentiated; Interleukin-1β, monocyte chemoattractant protein-1 and leptin were markedly increased in plasma before reperfusion, reflecting an extrarenal response possibly induced by afferent renal nerve activity from the ischemic kidney. Tumour necrosis factor-α  was the only mediator showing elevated lymph to plasma ratio following 30 min reperfusion, indicating that most cytokines were released directly into the bloodstream. The IR induced rise in cytokine levels was paralleled by a significant increase in high molecular weight plasma proteins in both lymph and urine. The latter was shown as a 14-166 fold increase in glomerular sieving coefficient of plasma proteins assessed by a novel proteomic approach, and indicated a temporarily reduced size selectivity of both glomerular and peritubular capillaries. Collectively, our data suggest that cytokines from the ischemic kidney explain most of the rise in plasma concentration, and that the locally produced substances enter the systemic circulation through transport directly to plasma and not via the interstitium to lymph.
  •  
24.
  •  
25.
  • Bruhn-Olszewska, Bozena, et al. (författare)
  • Loss of Y in leukocytes as a risk factor for critical COVID-19 in men.
  • 2022
  • Ingår i: Genome medicine. - : Springer Science and Business Media LLC. - 1756-994X. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The COVID-19 pandemic, which has a prominent social and economic impact worldwide, shows a largely unexplained male bias for the severity and mortality of the disease. Loss of chromosome Y (LOY) is a risk factor candidate in COVID-19 due to its prior association with many chronic age-related diseases, and its impact on immune gene transcription.Publicly available scRNA-seq data of PBMC samples derived from male patients critically ill with COVID-19 were reanalyzed, and LOY status was added to the annotated cells. We further studied LOY in whole blood for 211 COVID-19 patients treated at intensive care units (ICU) from the first and second waves of the pandemic. Of these, 139 patients were subject to cell sorting for LOY analysis in granulocytes, low-density neutrophils (LDNs), monocytes, and PBMCs.Reanalysis of available scRNA-seq data revealed LDNs and monocytes as the cell types most affected by LOY. Subsequently, DNA analysis indicated that 46%, 32%, and 29% of critically ill patients showed LOY above 5% cut-off in LDNs, granulocytes, and monocytes, respectively. Hence, the myeloid lineage that is crucial for the development of severe COVID-19 phenotype is affected by LOY. Moreover, LOY correlated with increasing WHO score (median difference 1.59%, 95% HDI 0.46% to 2.71%, p=0.025), death during ICU treatment (median difference 1.46%, 95% HDI 0.47% to 2.43%, p=0.0036), and history of vessel disease (median difference 2.16%, 95% HDI 0.74% to 3.7%, p=0.004), among other variables. In 16 recovered patients, sampled during ICU stay and 93-143 days later, LOY decreased significantly in whole blood and PBMCs. Furthermore, the number of LDNs at the recovery stage decreased dramatically (median difference 76.4 per 10,000 cell sorting events, 95% HDI 55.5 to 104, p=6e-11).We present a link between LOY and an acute, life-threatening infectious disease. Furthermore, this study highlights LOY as the most prominent clonal mutation affecting the myeloid cell lineage during emergency myelopoiesis. The correlation between LOY level and COVID-19 severity might suggest that this mutation affects the functions of monocytes and neutrophils, which could have consequences for male innate immunity.
  •  
26.
  • Brunet-Ratnasingham, Elsa, et al. (författare)
  • Sustained IFN signaling is associated with delayed development of SARS-CoV-2-specific immunity
  • 2023
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Plasma RNAemia, delayed antibody responses and inflammation predict COVID-19 outcomes, but the mechanisms underlying these immunovirological patterns are poorly understood. We profile 782 longitudinal plasma samples from 318 hospitalized COVID-19 patients. Integrated analysis using k-means reveal four patient clusters in a discovery cohort: mechanically ventilated critically-ill cases are subdivided into good prognosis and high-fatality clusters (reproduced in a validation cohort), while non-critical survivors are delineated by high and low antibody responses. Only the high-fatality cluster is enriched for transcriptomic signatures associated with COVID-19 severity, and each cluster has distinct RBD-specific antibody elicitation kinetics. Both critical and non-critical clusters with delayed antibody responses exhibit sustained IFN signatures, which negatively correlate with contemporaneous RBD-specific IgG levels and absolute SARS-CoV-2-specific B and CD4+ T cell frequencies. These data suggest that the “Interferon paradox” previously described in murine LCMV models is operative in COVID-19, with excessive IFN signaling delaying development of adaptive virus-specific immunity.
  •  
27.
  • Brunet-Ratnasingham, Elsa, et al. (författare)
  • Sustained IFN signaling is associated with delayed development of SARS-CoV-2-specific immunity.
  • 2024
  • Ingår i: Nature Communications. - 2041-1723. ; 15:1, s. 4177-
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma RNAemia, delayed antibody responses and inflammation predict COVID-19 outcomes, but the mechanisms underlying these immunovirological patterns are poorly understood. We profile 782 longitudinal plasma samples from 318 hospitalized patients with COVID-19. Integrated analysis using k-means reveals four patient clusters in a discovery cohort: mechanically ventilated critically-ill cases are subdivided into good prognosis and high-fatality clusters (reproduced in a validation cohort), while non-critical survivors segregate into high and low early antibody responders. Only the high-fatality cluster is enriched for transcriptomic signatures associated with COVID-19 severity, and each cluster has distinct RBD-specific antibody elicitation kinetics. Both critical and non-critical clusters with delayed antibody responses exhibit sustained IFN signatures, which negatively correlate with contemporaneous RBD-specific IgG levels and absolute SARS-CoV-2-specific B and CD4+ T cell frequencies. These data suggest that the "Interferon paradox" previously described in murine LCMV models is operative in COVID-19, with excessive IFN signaling delaying development of adaptive virus-specific immunity.
  •  
28.
  • Brännström, Andreas, et al. (författare)
  • Intermittent thoracic resuscitative endovascular balloon occlusion of the aorta improves renal function compared to 60 min continuous application after porcine class III hemorrhage
  • 2023
  • Ingår i: European Journal of Trauma and Emergency Surgery. - : Springer Berlin/Heidelberg. - 1863-9933 .- 1863-9941. ; 49:3, s. 1303-1313
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA) may be considered for stabilization of patients with hemorrhage from below the diaphragm. Occluding the aorta is a powerful means of hemorrhagic control but is also associated with acute kidney injury, which increases mortality in trauma patients. Allowing for intermittent distal blood flow during REBOA application (iREBOA) could decrease this risk, but circulatory consequences have not been sufficiently elucidated. Therefore, we investigated circulatory effects and the renal artery blood flow (RBF) in iREBOA versus continuous, complete aortic occlusion (cREBOA).Methods In a porcine model of uncontrolled class III hemorrhage (34% estimated total blood volume, mean 1360 mL), swine (n = 12, mean weight 60.3 kg) were randomly assigned to iREBOA: 3-min full deflation every 10 min (n = 6), or cREBOA (n = 6), for 60 min of thoracic (zone I) application. The animals then underwent 60 min of reperfusion (critical care phase). Results Survival was 100% in iREBOA and 83% in cREBOA. The intermittent balloon deflation protocol was hemodynamically tolerable in 63% of reperfusion intervals. Systolic blood pressure decreased during the reperfusion intervals in iREBOA animals (mean 108 mm Hg versus 169 mm Hg; p < 0.005). No differences were detected in heart rate, cardiac output or stroke volume between methods. Troponin I increased in cREBOA after 60 min (mean 666-187 ng/L, p < 0.05). The norepinephrine requirement increased in cREBOA during reperfusion (mean infusion time 12.5-5.5 min; p < 0.05). Total ischemic time decreased in iREBOA (60.0-48.6 min; p < 0.001). RBF increased in iREBOA during balloon deflations and after 60 min reperfusion (61%-39% of baseline RBF; p < 0.05). Urine output increased in iREBOA (mean 135-17 mL; p < 0.001). Nephronal osteopontin, a marker of ischemic injury, increased in cREBOA (p < 0.05).Conclusion iREBOA was survivable, did not cause rebleeding, decreased the total ischemic time and increased the renal blood flow, urine output and decreased renal ischemic injury compared to cREBOA. Intermittent reperfusions during REBOA may be preferred to be continuous, complete occlusion in prolonged application to improve renal function.
  •  
29.
  •  
30.
  • Bülow Anderberg, Sara, et al. (författare)
  • Increased levels of plasma cytokines and correlations to organ failure and 30-day mortality in critically ill Covid-19 patients
  • 2021
  • Ingår i: Cytokine. - : Springer Nature. - 1043-4666 .- 1096-0023. ; 138
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The infection caused by SARS CoV-2 has been postulated to induce a cytokine storm syndrome that results in organ failure and even death in a considerable number of patients. However, the inflammatory response in Corona virus disease-19 (Covid-19) and its potential to cause collateral organ damage has not been fully elucidated to date. This study aims to characterize the acute cytokine response in a cohort of critically ill Covid-19 patients.METHOD: 24 adults with PCR-confirmed Covid-19 were included at time of admission to intensive care a median of eleven days after initial symptoms. Eleven adult patients admitted for elective abdominal surgery with preoperative plasma samples served as controls. All patients were included after informed consent was obtained. 27 cytokines were quantified in plasma. The expression of inflammatory mediators was then related to routine inflammatory markers, SAPS3, SOFA score, organ failure and 30-day mortality.RESULTS: A general increase in cytokine expression was observed in all Covid-19 patients. A strong correlation between respiratory failure and IL-1ra, IL-4, IL-6, IL-8 and IP-10 expression was observed. Acute kidney injury development correlated well with increased levels of IL-1ra, IL-6, IL-8, IL-17a, IP-10 and MCP-1. Generally, the cohort demonstrated weaker correlations between cytokine expression and 30-day mortality out of which IL-8 showed the strongest signal in terms of mortality.CONCLUSION: The present study found that respiratory failure, acute kidney injury and 30-day mortality in critically ill Covid-19 patients are associated with moderate increases of a broad range of inflammatory mediators at time of admission.
  •  
31.
  • Bülow Anderberg, Sara (författare)
  • Inflammatory aspects of acute kidney injury development during severe infections
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Acute kidney injury is common in intensive care. In this setting sepsis, by definition a dysregulated inflammatory response secondary to infection, is the most common cause. Sepsis associated acute kidney injury is in turn linked to worse outcome. The syndrome is considered to be the result of multiple mechanisms elicited by the inflammatory response and not merely hypoperfusion. COVID-19 has become an additional cause of acute kidney injury in critically ill patients. The present thesis focused on investigating contributing aspects of the inflammatory response in regard to acute kidney injury development in sepsis and COVID-19.The innate immune response recognizes invading pathogens through preserved molecular structures. When detected small and short-acting immunomodulatory molecules, cytokines, are produced shaping the reaction. Neutrophils are quickly mobilized. They engage in degranulation and expulsion of extracellular traps aiming at eradicating pathogens but may in doing so cause collateral tissue damage. Neutrophils are proposed contributors to renal dysfunction during sepsis and COVID-19.We investigated the effect of hydrocortisone, a glucocorticoid, on renal function and neutrophil infiltration in an ovine sepsis model with associated renal impairment. The observed reduction in glomerular filtration and tubular sodium transport efficiency during sepsis was ameliorated. Neutrophil infiltration which was observed post mortem in renal tissue was not reduced by hydrocortisone.The progression of organ dysfunction and by extension also acute kidney injury during severe COVID-19 was early on considered caused by a hyperinflammatory state. We analysed plasma cytokine concentrations in patients admitted to intensive care because of respiratory failure secondary to COVID-19. Only a moderate increase of theses mediators was found. The majority of the cytokines analysed were in turn associated with acute kidney injury development.Human neutrophil lipocalin is a neutrophil granular protein. It was used to first evaluate neutrophil reactivity by measuring its concentration after ex vivo stimulation and second systemic activity by estimating its concentration in plasma. In turn the association with renal dysfunction in severe COVID-19 was explored. Increased concentrations in both instances were linked to a greater risk of developing severe acute kidney injury.Lastly, the effect of dexamethasone, another glucocorticoid, on AKI development and neutrophil extracellular markers including histones and myeloperoxidase-DNA in critical COVID-19 was investigated. Dexamethasone was associated with lower AKI incidence and reduced extracellular trap formation.
  •  
32.
  • Bülow Anderberg, Sara, et al. (författare)
  • Systemic Human Neutrophil Lipocalin Associates with Severe Acute Kidney Injury in SARS-CoV-2 Pneumonia
  • 2021
  • Ingår i: Journal of Clinical Medicine. - : MDPI. - 2077-0383. ; 10:18
  • Tidskriftsartikel (refereegranskat)abstract
    • Neutrophils have been suggested mediators of organ dysfunction in COVID-19. The current study investigated if systemic neutrophil activity, estimated by human neutrophil lipocalin (HNL) concentration in peripheral blood, is associated with acute kidney injury (AKI) development. A total of 103 adult patients admitted to intensive care, with PCR-confirmed SARS-CoV-2 infection, were prospectively included (Clinical Trials ID: NCT04316884). HNL was analyzed in plasma (P-HNL Dimer) and in whole blood (B-HNL). The latter after ex vivo activation with N-formyl-methionine-leucine-phenylalanine. All patients developed respiratory dysfunction and 62 (60%) were treated with invasive ventilation. Sixty-seven patients (65%) developed AKI, 18 (17%) progressed to AKI stage 3, and 14 (14%) were treated with continuous renal replacement therapy (CRRT). P-HNL Dimer was higher in patients with invasive ventilation, vasopressors, AKI, AKI stage 3, dialysis, and 30-day mortality (p < 0.001-0.046). B-HNL performed similarly with the exception of mild AKI and mortality (p < 0.001-0.004). The cohort was dichotomized by ROC estimated cutoff concentrations of 13.2 mu g/L and 190 mu g/L for P-HNL Dimer and B-HNL respectively. Increased cumulative risks for AKI, AKI stage 3, and death were observed if above the P-HNL cutoff and for AKI stage 3 if above the B-HNL cutoff. The relative risk of developing AKI stage 3 was nine and 39 times greater if above the cutoffs in plasma and whole blood, respectively, for CRRT eight times greater for both. In conclusion, systemically elevated neutrophil lipocalin, interpreted as increased neutrophil activity, was shown to be associated with an increased risk of severe AKI, renal replacement therapy, and mortality in COVID-19 patients with respiratory failure.
  •  
33.
  • Butler-Laporte, G, et al. (författare)
  • Exome-wide association study to identify rare variants influencing COVID-19 outcomes: Results from the Host Genetics Initiative
  • 2022
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404 .- 1553-7390. ; 18:11, s. e1010367-
  • Tidskriftsartikel (refereegranskat)abstract
    • Host genetics is a key determinant of COVID-19 outcomes. Previously, the COVID-19 Host Genetics Initiative genome-wide association study used common variants to identify multiple loci associated with COVID-19 outcomes. However, variants with the largest impact on COVID-19 outcomes are expected to be rare in the population. Hence, studying rare variants may provide additional insights into disease susceptibility and pathogenesis, thereby informing therapeutics development. Here, we combined whole-exome and whole-genome sequencing from 21 cohorts across 12 countries and performed rare variant exome-wide burden analyses for COVID-19 outcomes. In an analysis of 5,085 severe disease cases and 571,737 controls, we observed that carrying a rare deleterious variant in the SARS-CoV-2 sensor toll-like receptor TLR7 (on chromosome X) was associated with a 5.3-fold increase in severe disease (95% CI: 2.75–10.05, p = 5.41x10-7). This association was consistent across sexes. These results further support TLR7 as a genetic determinant of severe disease and suggest that larger studies on rare variants influencing COVID-19 outcomes could provide additional insights.
  •  
34.
  • Butler-Laporte, Guillaume, et al. (författare)
  • HLA allele-calling using whole-exome sequencing identifies 129 novel associations in 11 autoimmune diseases: a multi-ancestry analysis in the UK Biobank
  • 2023
  • Ingår i: Communicaitons Biology. - : Cold Spring Harbor Laboratory.
  • Tidskriftsartikel (refereegranskat)abstract
    • The human leukocyte antigen (HLA) region on chromosome 6 is strongly associated with many immune-mediated and infection-related diseases. Due to its highly polymorphic nature and complex linkage disequilibrium patterns, traditional genetic association studies of single nucleotide polymorphisms (SNPs) do not perform well in this region. Instead, the field has adopted the assessment of the association of HLA alleles (i.e., entire HLA gene haplotypes) with disease. Often based on genotyping arrays, these association studies impute HLA alleles, decreasing accuracy and thus statistical power for rare alleles and in non-European ancestries. Here, we use whole-exome sequencing (WES) from 454,824 UK Biobank participants to directly call HLA alleles using the HLA- HD algorithm. We show this method is more accurate than imputing HLA alleles and harness the improved statistical power to identify 360 associations for 11 auto-immune phenotypes (at least 129 likely novel), leading to better insights into the specific coding polymorphisms that underlie these diseases. We show that HLA alleles with synonymous variants, often overlooked in HLA studies, can significantly influence these phenotypes. Lastly, we show that HLA sequencing may improve polygenic risk scores accuracy across ancestries. These findings allow better characterization of the role of the HLA region in human disease.
  •  
35.
  • Butler-Laporte, Guillaume, et al. (författare)
  • Increasing serum iron levels and their role in the risk of infectious diseases : a Mendelian randomization approach
  • 2023
  • Ingår i: International Journal of Epidemiology. - : Oxford University Press. - 0300-5771 .- 1464-3685. ; 52:4, s. 1163-1174
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives Increased iron stores have been associated with elevated risks of different infectious diseases, suggesting that iron supplementation may increase the risk of infections. However, these associations may be biased by confounding or reverse causation. This is important, since up to 19% of the population takes iron supplementation. We used Mendelian randomization (MR) to bypass these biases and estimate the causal effect of iron on infections. Methods As instrumental variables, we used genetic variants associated with iron biomarkers in two genome-wide association studies (GWASs) of European ancestry participants. For outcomes, we used GWAS results from the UK Biobank, FinnGen, the COVID-19 Host Genetics Initiative or 23andMe, for seven infection phenotypes: 'any infections', combined, COVID-19 hospitalization, candidiasis, pneumonia, sepsis, skin and soft tissue infection (SSTI) and urinary tract infection (UTI). Results Most of our analyses showed increasing iron (measured by its biomarkers) was associated with only modest changes in the odds of infectious outcomes, with all 95% odds ratios confidence intervals within the 0.88 to 1.26 range. However, for the three predominantly bacterial infections (sepsis, SSTI, UTI), at least one analysis showed a nominally elevated risk with increased iron stores (P <0.05). Conclusion Using MR, we did not observe an increase in risk of most infectious diseases with increases in iron stores. However for bacterial infections, higher iron stores may increase odds of infections. Hence, using genetic variation in iron pathways as a proxy for iron supplementation, iron supplements are likely safe on a population level, but we should continue the current practice of conservative iron supplementation during bacterial infections or in those at high risk of developing them.
  •  
36.
  • Casswell, Stacey, et al. (författare)
  • COVID-19 Antibody Testing of Patients Admitted to the ICU by A Novel, Point-of-Care Assay, and the Relationship to Survival
  • 2021
  • Ingår i: Archives of Clinical and Biomedical Research. - : Fortune Journals. - 2572-5017. ; 05:06
  • Tidskriftsartikel (refereegranskat)abstract
    • Diagnosing persons infected by COVID-19 is key to the control of the pandemic. It has, however, become increasingly important to identify those who have had the infection by measurement of circulating antibodies against Sars-COV-2 of the IgM and IgG type. In this report we show the development of a rapid and sensitive point-of-care assay for the measurement of IgG antibodies against the two spike proteins, S1 and S2, of the Sars-COV-2 virus.Methods: The AgPlus electrochemical technology was applied and the S1 and S2 proteins were biotinylated and immobilized onto streptavidin coated magnetic particles as the capture component of the assay. The IgG antibodies bound to the particles were detected by anti-human IgG and the signal expressed as nC (nano Coulomb). Assay time was <10 min.Results: Plasma (n=211) from 117 SARS-Cov-2 PCR positive patients and from 78 persons with samples taken before the COVID-19 pandemic were analysed. The sensitivity and specificity of the assay were 91.9% and 100%, respectively. The assay was highly correlated to a predicate and FDA-approved IgG antibody ELISA (r=0.81). The IgG response was significantly lower in patients who died during their ICU stay.Conclusions: A poor IgG response after a COVID-19 infection is a serious risk factor as to death. A sensitive, rapid and accurate IgG antibody POC assay should be useful in the daily management and evaluation of COVID-19 infected patients.
  •  
37.
  • Cedervall, Jessica, et al. (författare)
  • Neutrophil extracellular traps promote cancer-associated inflammation and myocardial stress.
  • 2022
  • Ingår i: Oncoimmunology. - : Informa UK Limited. - 2162-4011 .- 2162-402X. ; 213, s. S2-S3
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer is associated with systemic pathologies that contribute to mortality, such as thrombosis and distant organ failure. The aim of this study was to investigate the potential role of neutrophil extracellular traps (NETs) in myocardial inflammation and tissue damage in treatment-naïve individuals with cancer. Mice with mammary carcinoma (MMTV-PyMT) had increased plasma levels of NETs measured as H3Cit-DNA complexes, paralleled with elevated coagulation, compared to healthy littermates. MMTV-PyMT mice displayed upregulation of pro-inflammatory markers in the heart, myocardial hypertrophy and elevated cardiac disease biomarkers in the blood, but not echocardiographic heart failure. Moreover, increased endothelial proliferation was observed in hearts from tumor-bearing mice. Removal of NETs by DNase I treatment suppressed the myocardial inflammation, expression of cardiac disease biomarkers and endothelial proliferation. Compared to a healthy control group, treatment-naïve cancer patients with different malignant disorders had increased NET formation, which correlated to plasma levels of the inflammatory marker CRP and the cardiac disease biomarkers NT-proBNP and sTNFR1, in agreement with the mouse data. Altogether, our data indicate that NETs contribute to inflammation and myocardial stress during malignancy. These findings suggest NETs as potential therapeutic targets to prevent cardiac inflammation and dysfunction in cancer patients.
  •  
38.
  •  
39.
  •  
40.
  •  
41.
  • Eckerbom, Per, et al. (författare)
  • Reduced Renal Apparent Diffusion Coefficient at Follow Up after COVID-19 Associated Acute Kidney Injury
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Severe Corona virus disease 2019 (COVID-19) with acute kidney injury (AKI) increases the risk of developing chronic kidney disease (CKD). In the present study we aimed to investigate the effects of severe COVID-19 on renal blood flow, perfusion, oxygenation and tissue characteristics in recovered patients using noninvasive multiparametric magnetic resonance imaging (MRI). Twenty-two patients, previously treated in the intensive care unit for COVID-19 were stratified depending on their degree of AKI during hospitalization. Patients without AKI were matched with those with AKI grade 1 and AKI grade 3 regarding age, sex, height, weight, body surface area (BSA) and body mass index (BMI). All patients had a normal measurement of creatinine within two years before hospitalization. An MRI scan was conducted 21±6 weeks after the first day of intensive care. Cortical and medullary apparent diffusion coefficients (ADC) were significantly lower in the ´AKI grade 3´group compared to the ´no AKI´ group, 1.83±0.11 vs 2.16±0.13 x 10-3 mm2/s (p=0.001) for cortex and 1.84±0.04 vs 2.09±0.13 x 10-3 mm2/s (p=0.007) for medulla. Also, total renal blood flow (tRBF) and global perfusion were significantly lower in the ´AKI grade 3´ group compared to the ´no AKI´ group. No differences regarding renal oxygenation, T1 or T2 were found. We conclude that patients treated for severe COVID-19 with high grade AKI, show decreased cortical and medullary ADC and reduced total renal blood flow and global perfusion compared to similar patients without AKI at follow up approximately five months after intensive care. These findings might indicate incipient development of renal fibrosis. 
  •  
42.
  • Ekbom, Emil, et al. (författare)
  • Impaired diffusing capacity for carbon monoxide is common in critically ill Covid-19 patients at four months post-discharge
  • 2021
  • Ingår i: Respiratory Medicine. - : Elsevier. - 0954-6111 .- 1532-3064. ; 182
  • Tidskriftsartikel (refereegranskat)abstract
    • There is limited knowledge about the long-term effects on pulmonary function of COVID-19 in patients that required intensive care treatment. Spirometry and diffusing capacity for carbon monoxide (DLCO) were measured in 60 subjects at 3-6 months post discharge. Impaired lung function was found in 52% of the subjects, with reduced DLCO as the main finding. The risk increased with age above 60 years, need for mechanical ventilation and longer ICU stay as well as lower levels of C-reactive protein at admission. This suggests the need of follow-up with pulmonary function testing in intensive-care treated patients.
  •  
43.
  • Eklund, Rakel, 1986-, et al. (författare)
  • Surviving COVID-19 : patients' experiences of care and path to recovery
  • 2024
  • Ingår i: International Journal of Qualitative Studies on Health and Well-being. - : Taylor & Francis. - 1748-2623 .- 1748-2631. ; 19:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: To examine patients' experiences of receiving care on an ICU for COVID-19 and the subsequent rehabilitation process.Methods: An explorative and inductive design was used. Participants were recruited from two university hospitals in Sweden. Patients admitted to the ICU due to COVID-19 from March 2020 to April 2021, who enrolled in the ICU follow-up, and understood and spoke Swedish were invited to participate. In total, 20 participants completed a semi-structured interview, of whom 18 were included in the thematic analysis.Results: The analysis resulted in two themes: "An isolated world with silver linings" and "Recovery in the wake of the pandemic". Findings show that patients cared for on an ICU for COVID-19 during the pandemic felt safe but experienced a sense of vulnerability. After discharge, physical rehabilitation was a slow process with frustrating day-to-day fluctuations. Mentally, participants felt isolated, fatigued, and emotionally sensitive. Patients reported that love and support from family and friends were crucial for the recovery process.Conclusions: This study highlights the challenges of recovering from COVID-19, emphasizing the importance of continued support from health care, public services, family and friends. It provides important insights into patients' experiences and can inform future healthcare strategies and policies.
  •  
44.
  • Eriksson, Mikael, et al. (författare)
  • Uromodulin in sepsis and severe pneumonia : a two-sample Mendelian randomization study
  • 2024
  • Ingår i: Physiological Genomics. - : American Physiological Society. - 1094-8341 .- 1531-2267. ; 56:5, s. 409-416
  • Tidskriftsartikel (refereegranskat)abstract
    • The outcome for patients with sepsis-associated acute kidney injury in the intensive care unit (ICU) remains poor. Low serum uromodulin (sUMOD) protein levels have been proposed as a causal mediator of this effect. We investigated the effect of different levels of sUMOD on the risk of sepsis and severe pneumonia and outcomes in these conditions. A two-sample Mendelian randomization (MR) study was performed. Single-nucleotide polymorphisms (SNPs) associated with increased levels of sUMOD were identified and used as instrumental variables for association with outcomes. Data from different cohorts were combined based on disease severity and meta-analyzed. Five SNPs associated with increased sUMOD levels were identified and tested in six datasets from two biobanks. There was no protective effect of increased levels of sUMOD on the risk of sepsis [two cohorts, odds ratio (OR) 0.99 (95% confidence interval 0.95-1.03), P = 0.698, and OR 0.95 (0.91-1.00), P = 0.060, respectively], risk of sepsis requiring ICU admission [OR 1.04 (0.93-1.16), P = 0.467], ICU mortality in sepsis [OR 1.00 (0.74-1.37), P = 0.987], risk of pneumonia requiring ICU admission [OR 1.05 (0.98-1.14), P = 0.181], or ICU mortality in pneumonia [OR 1.17 (0.98-1.39), P = 0.079]. Meta-analysis of hospital-admitted and ICU-admitted patients separately yielded similar results [OR 0.98 (0.95-1.01), P = 0.23, and OR 1.05 (0.99-1.12), P = 0.86, respectively]. Among patients with sepsis and severe pneumonia, there was no protective effect of different levels of sUMOD. Results were consistent regardless of geographic origins and not modified by disease severity.
  •  
45.
  • Eriksson, Oskar, 1984-, et al. (författare)
  • Mannose-Binding Lectin is Associated with Thrombosis and Coagulopathy in Critically Ill COVID-19 Patients
  • 2020
  • Ingår i: Thrombosis and Haemostasis. - : Georg Thieme Verlag KG. - 0340-6245 .- 2567-689X. ; 120:12, s. 1720-1724
  • Tidskriftsartikel (refereegranskat)abstract
    • The ongoing COVID-19 pandemic has caused significant morbidity and mortality worldwide, as well as profound effects on society. COVID-19 patients have an increased risk of thromboembolic (TE) complications, which develop despite pharmacological thromboprophylaxis. The mechanism behind COVID-19-associated coagulopathy remains unclear. Mannose-binding lectin (MBL), a pattern recognition molecule that initiates the lectin pathway of complement activation, has been suggested as a potential amplifier of blood coagulation during thromboinflammation. Here we describe data from a cohort of critically ill COVID-19 patients ( n =65) treated at a tertiary hospital center intensive care unit (ICU). A subset of patients had strongly elevated MBL plasma levels, and activity upon ICU admission, and patients who developed symptomatic TE (14%) had significantly higher MBL levels than patients without TE. MBL was strongly correlated to plasma D-dimer levels, a marker of COVID-19 coagulopathy, but showed no relationship to degree of inflammation or other organ dysfunction. In conclusion, we have identified complement activation through the MBL pathway as a novel amplification mechanism that contributes to pathological thrombosis in critically ill COVID-19 patients. Pharmacological targeting of the MBL pathway could be a novel treatment option for thrombosis in COVID-19. Laboratory testing of MBL levels could be of value for identifying COVID-19 patients at risk for TE events.
  •  
46.
  • Fallerini, Chiara, et al. (författare)
  • Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity
  • 2022
  • Ingår i: Human Genetics. - : Springer Nature. - 0340-6717 .- 1432-1203. ; 141:1, s. 147-173
  • Tidskriftsartikel (refereegranskat)abstract
    • The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management.
  •  
47.
  •  
48.
  • Franzén, Stephanie, et al. (författare)
  • Plasma cytokine levels in spinal surgery with sevoflurane or total intravenous propofol anesthesia : A post hoc analysis of a randomized controlled trial
  • 2023
  • Ingår i: Cytokine. - : Elsevier. - 1043-4666 .- 1096-0023. ; 169
  • Tidskriftsartikel (refereegranskat)abstract
    • Surgical tissue trauma stimulates an inflammatory response resulting in increased levels of cytokines which could contribute to acute kidney injury (AKI). It is not clear if anesthetic modality affects this response. We aimed to investigate the role of anesthesia in a healthy surgical population on the inflammatory response and the correlation to plasma creatinine. This study is a post hoc analysis of a published randomized clinical trial. We analyzed plasma from patients who underwent elective spinal surgery randomized to either total intravenous propofol anesthesia (n = 12) or sevoflurane anesthesia (n = 10). The plasma samples were collected before anesthesia, during anesthesia, and 1 h after surgery. Plasma cytokine levels after surgery were analyzed for correlations with duration of surgical insult and change in plasma creatinine concentration. The cytokine interleukin-6 (IL-6) was increased after surgery compared with preoperatively. IL-6 was higher in the sevoflurane group than the propofol group after surgery. No patient developed AKI, but plasma creatinine was increased postoperatively in the sevoflurane group. There was a significant association between surgical time and plasma IL-6 postoperatively. No significant correlation between change in plasma creatinine and IL-6 was detected. The cytokines IL-4, IL-13, Eotaxin, Interferon γ-Induced Protein 10 (IP-10), Granulocyte Colony-Stimulating Factor (G-CSF), Macrophage Inflammatory Protein-1β (MIP-1β), and Monocyte Chemoattractant Protein 1 (MCP-1) were lower postoperatively than before surgery independent of anesthetic modality. This post hoc analysis revealed that plasma IL-6 was increased after surgery and more so in the sevoflurane group than the propofol group. Postoperative plasma IL-6 concentration was associated with surgical time.
  •  
49.
  • Franzén, Stephanie, et al. (författare)
  • Postoperative acute kidney injury after volatile or intravenous anesthesia : a meta-analysis
  • 2023
  • Ingår i: American Journal of Physiology - Renal Physiology. - : American Physiological Society. - 1931-857X .- 1522-1466. ; 324:4, s. F329-F334
  • Tidskriftsartikel (refereegranskat)abstract
    • Postoperative acute kidney injury (AKI) is a common complication after surgery. The pathophysiology of postoperative AKI is complex. One potentially important factor is anesthetic modality. We, therefore, conducted a meta-analysis of the available lit-erature regarding anesthetic modality and incidence of postoperative AKI. Records were retrieved until January 17, 2023, with the search terms ("propofol" OR "intravenous") AND ("sevoflurane" OR "desflurane" OR "isoflurane" OR "volatile" OR "inhala-tional") AND ("acute kidney injury" OR "AKI"). A meta-analysis for common effects and random effects was performed after exclusion assessment. Eight records were included in the meta-analysis with a total of 15,140 patients (n = 7,542 propofol and n = 7,598 volatile). The common and random effects model revealed that propofol was associated with a lower incidence of postoperative AKI compared with volatile anesthesia [odds ratio: 0.63 (95% confidence interval: 0.56-0.72) and 0.49 (95% confidence interval: 0.33-0.73), respectively]. In conclusion, the meta-analysis revealed that propofol anesthesia is associated with a lower incidence of postoperative AKI compared with volatile anesthesia. This may motivate choosing propofol-based anesthesia in patients with increased risk of postoperative AKI due to preexisting renal impairment or surgery with a high risk of renal ischemia. NEW & NOTEWORTHY This study analyzed the available literature on anesthetic modality and incidence of postoperative AKI. The meta-analysis revealed that propofol is associated with lower incidence of AKI compared with volatile anesthesia. It might therefore be considerable to use propofol anesthesia in surgeries with increased susceptibility for developing renal injuries such as cardiopulmonary bypass and major abdominal surgery.
  •  
50.
  • Frithiof, Robert, et al. (författare)
  • Critical illness polyneuropathy, myopathy and neuronal biomarkers in COVID-19 patients: A prospective study
  • 2021
  • Ingår i: Clinical Neurophysiology. - : Elsevier BV. - 1388-2457 .- 1872-8952. ; 132:7, s. 1733-1740
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: The aim was to characterize the electrophysiological features and plasma biomarkers of critical illness polyneuropathy (CIN) and myopathy (CIM) in coronavirus disease 2019 (COVID-19) patients with intensive care unit acquired weakness (ICUAW). Methods: An observational ICU cohort study including adult patients admitted to the ICU at Uppsala University Hospital, Uppsala, Sweden, from March 13th to June 8th 2020. We compared the clinical, electrophysiological and plasma biomarker data between COVID-19 patients who developed CIN/CIM and those who did not. Electrophysiological characteristics were also compared between COVID-19 and non-COVID-19 ICU patients. Results: 111 COVID-19 patients were included, 11 of whom developed CIN/CIM. Patients with CIN/CIM had more severe illness; longer ICU stay, more thromboembolic events and were more frequently treated with invasive ventilation for longer than 2 weeks. In particular CIN was more frequent among COVID-19 patients with ICUAW (50%) compared with a non-COVID-19 cohort (0%, p = 0.008). Neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAp) levels were higher in the CIN/CIM group compared with those that did not develop CIN/CIM (both p = 0.001) and correlated with nerve amplitudes. Conclusions: CIN/CIM was more prevalent among COVID-19 ICU patients with severe illness. Significance: COVID-19 patients who later developed CIN/CIM had significantly higher NfL and GFAp in the early phase of ICU care, suggesting their potential as predictive biomarkers for CIN/CIM. (c) 2021 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 167
Typ av publikation
tidskriftsartikel (146)
annan publikation (8)
forskningsöversikt (7)
doktorsavhandling (5)
licentiatavhandling (1)
Typ av innehåll
refereegranskat (126)
övrigt vetenskapligt/konstnärligt (40)
populärvet., debatt m.m. (1)
Författare/redaktör
Hultström, Michael, ... (127)
Frithiof, Robert (77)
Lipcsey, Miklós (75)
Hultström, Michael (39)
Larsson, Anders (26)
Skogstrand, Trude (20)
visa fler...
Leh, Sabine (13)
Larsson, Ing-Marie, ... (12)
Bülow Anderberg, Sar ... (12)
Jönsson, Sofia (12)
Iversen, Bjarne M (12)
Wallin, Ewa (11)
Rubertsson, Sten (10)
Helle, Frank (8)
Nilsson, Bo (7)
Luther, Tomas (7)
Becirovic Agic, Medi ... (7)
Nakanishi, Tomoko (7)
Lai, En Yin (7)
Järhult, Josef D., 1 ... (6)
Reed, Rolf K (6)
Richards, J. Brent (6)
Zeberg, Hugo (6)
Butler-Laporte, Guil ... (6)
Persson, Barbro (6)
Eriksson, Oskar, 198 ... (6)
Nilsson Ekdahl, Kris ... (5)
Franzén, Stephanie (5)
Tenstad, Olav (5)
Zhou, Sirui (5)
Chen, Yiheng (5)
Yoshiji, Satoshi (5)
Forgetta, Vincenzo (5)
Eriksson, Mats B (5)
Malinovschi, Andrei, ... (4)
Adamski, Jan (4)
Weigl, Wojciech (4)
Fromell, Karin (4)
Abbafati, Cristiana (4)
Perchiazzi, Gaetano (4)
Venge, Per (4)
Palm, Fredrik (4)
Bergqvist, Anders (4)
Larsson, Anders O. (4)
Becriovic Agic, Medi ... (4)
Pellegrini, Mariange ... (4)
Nicolaes, Gerry A.F. (4)
Patzak, Andreas (4)
Paliege, Alexander (4)
Melville, Jacqueline ... (4)
visa färre...
Lärosäte
Uppsala universitet (167)
Karolinska Institutet (23)
Göteborgs universitet (5)
Linnéuniversitetet (5)
Linköpings universitet (4)
Lunds universitet (4)
visa fler...
Umeå universitet (3)
Kungliga Tekniska Högskolan (1)
Stockholms universitet (1)
Södertörns högskola (1)
Högskolan Dalarna (1)
visa färre...
Språk
Engelska (164)
Norska (2)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (145)
Naturvetenskap (8)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy