SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hyatt D. G.) "

Sökning: WFRF:(Hyatt D. G.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fenstermacher, M.E., et al. (författare)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
2.
  • Prins, J. T. H., et al. (författare)
  • Surgical stabilization versus nonoperative treatment for flail and non-flail rib fracture patterns in patients with traumatic brain injury
  • 2022
  • Ingår i: European Journal of Trauma and Emergency Surgery. - : Springer Science and Business Media LLC. - 1863-9933 .- 1863-9941. ; 48:4, s. 3327-3338
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose Literature on outcomes after SSRF, stratified for rib fracture pattern is scarce in patients with moderate to severe traumatic brain injury (TBI; Glasgow Coma Scale <= 12). We hypothesized that SSRF is associated with improved outcomes as compared to nonoperative management without hampering neurological recovery in these patients. Methods A post hoc subgroup analysis of the multicenter, retrospective CWIS-TBI study was performed in patients with TBI and stratified by having sustained a non-flail fracture pattern or flail chest between January 1, 2012 and July 31, 2019. The primary outcome was mechanical ventilation-free days and secondary outcomes were in-hospital outcomes. In multivariable analysis, outcomes were assessed, stratified for rib fracture pattern. Results In total, 449 patients were analyzed. In patients with a non-flail fracture pattern, 25 of 228 (11.0%) underwent SSRF and in patients with a flail chest, 86 of 221 (38.9%). In multivariable analysis, ventilator-free days were similar in both treatment groups. For patients with a non-flail fracture pattern, the odds of pneumonia were significantly lower after SSRF (odds ratio 0.29; 95% CI 0.11-0.77; p = 0.013). In patients with a flail chest, the ICU LOS was significantly shorter in the SSRF group (beta, - 2.96 days; 95% CI - 5.70 to - 0.23; p = 0.034). Conclusion In patients with TBI and a non-flail fracture pattern, SSRF was associated with a reduced pneumonia risk. In patients with TBI and a flail chest, a shorter ICU LOS was observed in the SSRF group. In both groups, SSRF was safe and did not hamper neurological recovery.
  •  
3.
  • Prins, Jonne T H, et al. (författare)
  • Outcome after surgical stabilization of rib fractures versus nonoperative treatment in patients with multiple rib fractures and moderate to severe traumatic brain injury (CWIS-TBI).
  • 2021
  • Ingår i: The journal of trauma and acute care surgery. - 2163-0763. ; 90:3, s. 492-500
  • Tidskriftsartikel (refereegranskat)abstract
    • Outcomes after surgical stabilization of rib fractures (SSRF) have not been studied in patients with multiple rib fractures and traumatic brain injury (TBI). We hypothesized that SSRF, as compared to nonoperative management, is associated with favorable outcomes in patients with TBI.A multicenter, retrospective cohort study was performed in patients with rib fractures and TBI between January 2012 and July 2019. Patients who underwent SSRF were compared to those managed nonoperatively. The primary outcome was mechanical ventilation-free days. Secondary outcomes were Intensive Care Unit (ICU-LOS) and hospital length of stay (HLOS), tracheostomy, occurrence of complications, neurologic outcome, and mortality. Patients were further stratified into moderate (GCS 9-12) and severe (GCS ≤8) TBI.The study cohort consisted of 456 patients of which 111 (24.3%) underwent SSRF. SSRF was performed at a median of 3 days and SSRF-related complication rate was 3.6%. In multivariable analyses, there was no difference in mechanical ventilation-free days between the SSRF and nonoperative groups. The odds of developing pneumonia (OR 0.59 (95% CI 0.38-0.98), p=0.043) and 30-day mortality (OR 0.32 (95% CI 0.11-0.91), p=0.032) were significantly lower in the SSRF group. Patients with moderate TBI had similar outcome in both groups. In patients with severe TBI, the odds of 30-day mortality was significantly lower after SSRF (0.19 (95% CI 0.04-0.88), p=0.034).In patients with multiple rib fractures and TBI, the mechanical ventilation-free days did not differ between the two treatment groups. In addition, SSRF was associated with a significantly lower risk of pneumonia and 30-day mortality. In patients with moderate TBI, outcome was similar. In patients with severe TBI a lower 30-day mortality was observed. There was a low SSRF-related complication risk. These data suggest a potential role for SSRF in select patients with TBI.Therapeutic, level IV.
  •  
4.
  • Rudakov, D. L., et al. (författare)
  • Dust measurements in tokamaks (invited)
  • 2008
  • Ingår i: Review of Scientific Instruments. - : AIP Publishing. - 0034-6748 .- 1089-7623. ; 79:10, s. 10F303-
  • Tidskriftsartikel (refereegranskat)abstract
    • Dust production and accumulation present potential safety and operational issues for the ITER. Dust diagnostics can be divided into two groups: diagnostics of dust on surfaces and diagnostics of dust in plasma. Diagnostics from both groups are employed in contemporary tokamaks; new diagnostics suitable for ITER are also being developed and tested. Dust accumulation in ITER is likely to occur in hidden areas, e.g., between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In the DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering is able to resolve particles between 0.16 and 1.6 mu m in diameter; using these data the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in two-dimension with a single camera or three-dimension using multiple cameras, but determination of particle size is challenging. In order to calibrate diagnostics and benchmark dust dynamics modeling, precharacterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase in carbon line (CI, CII, C(2) dimer) and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy