SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hye Abdul) "

Sökning: WFRF:(Hye Abdul)

  • Resultat 1-23 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ashton, Nicholas J., et al. (författare)
  • A multicentre validation study of the diagnostic value of plasma neurofilament light
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12, s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased cerebrospinal fluid neurofilament light (NfL) is a recognized biomarker for neurodegeneration that can also be assessed in blood. Here, we investigate plasma NfL as a marker of neurodegeneration in 13 neurodegenerative disorders, Down syndrome, depression and cognitively unimpaired controls from two multicenter cohorts: King's College London (n = 805) and the Swedish BioFINDER study (n = 1,464). Plasma NfL was significantly increased in all cortical neurodegenerative disorders, amyotrophic lateral sclerosis and atypical parkinsonian disorders. We demonstrate that plasma NfL is clinically useful in identifying atypical parkinsonian disorders in patients with parkinsonism, dementia in individuals with Down syndrome, dementia among psychiatric disorders, and frontotemporal dementia in patients with cognitive impairment. Data-driven cut-offs highlighted the fundamental importance of age-related clinical cut-offs for disorders with a younger age of onset. Finally, plasma NfL performs best when applied to indicate no underlying neurodegeneration, with low false positives, in all age-related cut-offs.
  •  
2.
  • Ashton, Nicholas J., et al. (författare)
  • A plasma protein classifier for predicting amyloid burden for preclinical Alzheimer's disease.
  • 2019
  • Ingår i: Science advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 5:2
  • Tidskriftsartikel (refereegranskat)abstract
    • A blood-based assessment of preclinical disease would have huge potential in the enrichment of participants for Alzheimer's disease (AD) therapeutic trials. In this study, cognitively unimpaired individuals from the AIBL and KARVIAH cohorts were defined as Aβ negative or Aβ positive by positron emission tomography. Nontargeted proteomic analysis that incorporated peptide fractionation and high-resolution mass spectrometry quantified relative protein abundances in plasma samples from all participants. A protein classifier model was trained to predict Aβ-positive participants using feature selection and machine learning in AIBL and independently assessed in KARVIAH. A 12-feature model for predicting Aβ-positive participants was established and demonstrated high accuracy (testing area under the receiver operator characteristic curve = 0.891, sensitivity = 0.78, and specificity = 0.77). This extensive plasma proteomic study has unbiasedly highlighted putative and novel candidates for AD pathology that should be further validated with automated methodologies.
  •  
3.
  • Ashton, Nicholas J., et al. (författare)
  • An update on blood-based biomarkers for non-Alzheimer neurodegenerative disorders.
  • 2020
  • Ingår i: Nature Reviews Neurology. - : Springer Science and Business Media LLC. - 1759-4766 .- 1759-4758. ; 16, s. 265-284
  • Forskningsöversikt (refereegranskat)abstract
    • Cerebrospinal fluid analyses and neuroimaging can identify the underlying pathophysiology at the earliest stage of some neurodegenerative disorders, but do not have the scalability needed for population screening. Therefore, a blood-based marker for such pathophysiology would have greater utility in a primary care setting and in eligibility screening for clinical trials. Rapid advances in ultra-sensitive assays have enabled the levels of pathological proteins to be measured in blood samples, but research has been predominantly focused on Alzheimer disease (AD). Nonetheless, proteins that were identified as potential blood-based biomarkers for AD, for example, amyloid-β, tau, phosphorylated tau and neurofilament light chain, are likely to be relevant to other neurodegenerative disorders that involve similar pathological processes and could also be useful for the differential diagnosis of clinical symptoms. This Review outlines the neuropathological, clinical, molecular imaging and cerebrospinal fluid features of the most common neurodegenerative disorders outside the AD continuum and gives an overview of the current status of blood-based biomarkers for these disorders.
  •  
4.
  • Ashton, Nicholas J., et al. (författare)
  • Increased plasma neurofilament light chain concentration correlates with severity of post-mortem neurofibrillary tangle pathology and neurodegeneration
  • 2019
  • Ingår i: Acta Neuropathologica Communications. - : Springer Science and Business Media LLC. - 2051-5960. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease (AD) is pathologically characterized by the accumulation of amyloid-β (Aβ) plaques, neurofibrillary tangles and widespread neuronal loss in the brain. In recent years, blood biomarkers have emerged as a realistic prospect to highlight accumulating pathology for secondary prevention trials. Neurofilament light chain (NfL), a marker of axonal degeneration, is robustly elevated in the blood of many neurological and neurodegenerative conditions, including AD. A strong relationship with cerebrospinal fluid (CSF) NfL suggests that these biomarker modalities reflect the same pathological process. Yet, the connection between blood NfL and brain tissue pathology has not been directly compared. In this study, longitudinal plasma NfL from cognitively healthy controls (n = 12) and AD participants (n = 57) were quantified by the Simoa platform. On reaching post-mortem, neuropathological assessment was performed on all participants, with additional frozen and paraffin-embedded tissue acquired from 26 participants for further biochemical (Aβ1-42, Aβ1-40, tau) and histological (NfL) evaluation. Plasma NfL concentrations were significantly increased in AD and correlated with cognitive decline, independent of age. Retrospective stratification based on Braak staging revealed that baseline plasma NfL concentrations were associated with higher neurofibrillary tangle pathology at post-mortem. Longitudinal increases in plasma NfL were observed in all Braak groupings; a significant negative association, however, was found between plasma NfL at time point 1 and both its rate of change and annual percentage increase. Immunohistochemical evaluation of NfL in the medial temporal gyrus (MTG) demonstrated an inverse relationship between Braak stages and NfL staining. Importantly, a significant negative correlation was found between the plasma NfL measurement closest to death and the level of NfL staining in the MTG at post-mortem. For the first time, we demonstrate that plasma NfL associates with the severity of neurofibrillary tangle pathology and neurodegeneration in the post-mortem brain.
  •  
5.
  • Ashton, Nicholas J., et al. (författare)
  • No association of salivary total tau concentration with Alzheimer's disease
  • 2018
  • Ingår i: Neurobiology of Aging. - : Elsevier BV. - 0197-4580 .- 1558-1497. ; 70, s. 125-127
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a need for an accessible biomarker that can complement current cerebrospinal fluid and imaging biomarkers in an accurate and early diagnosis of Alzheimer disease (AD). Saliva is a rich source of potential biomarkers and proteins related to neurodegenerative disorders have been shown to be present in this matrix, including tau. In this study, we quantified salivary total tau (t-tau) concentration in 160 healthy elderly control, 68 mild cognitive impairment, and 53 AD participants using ultrasensitive Single molecule array (Simoa) technology. No median difference in salivary t-tau concentration was found between AD and mild cognitive impairment or healthy elderly control (12.3 ng/L, 9.8 ng/L and 9.6 ng/L, respectively, p = 0.219). In addition, there was no association of salivary t-tau concentration with neurophysiological assessment or structural magnetic resonance imaging. Despite a nominal increase in AD, due to the large overlaps in concentrations between clinical groups, we conclude that salivary t-tau is a suitable biomarker neither for AD nor for cognitive impairment.
  •  
6.
  • Ashton, Nicholas J., et al. (författare)
  • Plasma levels of soluble TREM2 and neurofilament light chain in TREM2 rare variant carriers.
  • 2019
  • Ingår i: Alzheimer's research & therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Results from recent clinical studies suggest that cerebrospinal fluid (CSF) biomarkers that are indicative of Alzheimer's disease (AD) can be replicated in blood, e.g. amyloid-beta peptides (Aβ42 and Aβ40) and neurofilament light chain (NFL). Such data proposes that blood is a rich source of potential biomarkers reflecting central nervous system pathophysiology and should be fully explored for biomarkers that show promise in CSF. Recently, soluble fragments of the triggering receptor expressed on myeloid cells 2 (sTREM2) protein in CSF have been reported to be increased in prodromal AD and also in individuals with TREM2 rare genetic variants that increase the likelihood of developing dementia.In this study, we measured the levels of plasma sTREM2 and plasma NFL using the MesoScale Discovery and single molecule array platforms, respectively, in 48 confirmed TREM2 rare variant carriers and 49 non-carriers.Our results indicate that there are no changes in plasma sTREM2 and NFL concentrations between TREM2 rare variant carriers and non-carriers. Furthermore, plasma sTREM2 is not different between healthy controls, mild cognitive impairment (MCI) or AD.Concentrations of plasma sTREM2 do not mimic the recent changes found in CSF sTREM2.
  •  
7.
  • Ashton, Nicholas J., et al. (författare)
  • Plasma p-tau231: a new biomarker for incipient Alzheimer's disease pathology.
  • 2021
  • Ingår i: Acta neuropathologica. - : Springer Science and Business Media LLC. - 1432-0533 .- 0001-6322. ; 141:5, s. 709-724
  • Tidskriftsartikel (refereegranskat)abstract
    • The quantification of phosphorylated tau in biofluids, either cerebrospinal fluid (CSF) or plasma, has shown great promise in detecting Alzheimer's disease (AD) pathophysiology. Tau phosphorylated at threonine 231 (p-tau231) is one such biomarker in CSF but its usefulness as a blood biomarker is currently unknown. Here, we developed an ultrasensitive Single molecule array (Simoa) for the quantification of plasma p-tau231 which was validated in four independent cohorts (n=588) in different settings, including the full AD continuum and non-AD neurodegenerative disorders. Plasma p-tau231 was able to identify patients with AD and differentiate them from amyloid-β negative cognitively unimpaired (CU) older adults with high accuracy (AUC=0.92-0.94). Plasma p-tau231 also distinguished AD patients from patients with non-AD neurodegenerative disorders (AUC=0.93), as well as from amyloid-β negative MCI patients (AUC=0.89). In a neuropathology cohort, plasma p-tau231 in samples taken on avergae 4.2years prior to post-mortem very accurately identified AD neuropathology in comparison to non-AD neurodegenerative disorders (AUC=0.99), this is despite all patients being given an AD dementia diagnosis during life. Plasma p-tau231 was highly correlated with CSF p-tau231, tau pathology as assessed by [18F]MK-6240 positron emission tomography (PET), and brain amyloidosis by [18F]AZD469 PET. Remarkably, the inflection point of plasma p-tau231, increasing as a function of continuous [18F]AZD469 amyloid-β PET standardized uptake value ratio, was shown to be earlier than standard thresholds of amyloid-β PET positivity and the increase of plasma p-tau181. Furthermore, plasma p-tau231 was significantly increased in amyloid-β PET quartiles 2-4, whereas CSF p-tau217 and plasma p-tau181 increased only at quartiles 3-4 and 4, respectively. Finally, plasma p-tau231 differentiated individuals across the entire Braak stage spectrum, including Braak staging from Braak 0 through Braak I-II, which was not observed for plasma p-tau181. To conclude, this novel plasma p-tau231 assay identifies the clinicalstages of ADand neuropathology equally well as plasma p-tau181, but increases earlier, already with subtle amyloid-β deposition, prior to the threshold for amyloid-β PET positivity has been attained, and also in response to early brain tau deposition. Thus, plasma p-tau231 is a promising novel biomarker of emerging AD pathology with the potential to facilitate clinical trials to identify vulnerable populations below PET threshold of amyloid-β positivity or apparent entorhinal tau deposition.
  •  
8.
  • Ashton, Nicholas J., et al. (författare)
  • Update on biomarkers for amyloid pathology in Alzheimer's disease
  • 2018
  • Ingår i: Biomarkers in Medicine. - : Future Medicine Ltd. - 1752-0363 .- 1752-0371. ; 12:7, s. 799-812
  • Forskningsöversikt (refereegranskat)abstract
    • At the center of Alzheimer's disease pathogenesis is the aberrant aggregation of amyloid-β (Aβ) into oligomers, fibrils and plaques. Effective monitoring of Aβ deposition directly in patients is essential to assist anti-Aβ therapeutics in target engagement and participant selection. In the advent of approved anti-Aβ therapeutics, biomarkers will become of fundamental importance in initiating treatments having disease modifying effects at the earliest stage. Two well-established Aβ biomarkers are widely utilized: Aβ-binding ligands for positron emission tomography and immunoassays to measure Aβ42 in cerebrospinal fluid. In this review, we will discuss the current clinical, diagnostic and research state of biomarkers for Aβ pathology. Furthermore, we will explore the current application of blood-based markers to assess Aβ pathology.
  •  
9.
  • Batzu, Lucia, et al. (författare)
  • Plasma p-tau181, neurofilament light chain and association with cognition in Parkinson's disease.
  • 2022
  • Ingår i: NPJ Parkinson's disease. - : Springer Science and Business Media LLC. - 2373-8057. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Early identification of cognitive impairment in Parkinson's disease (PD) has important clinical and research implications. The aim of our study was to investigate the role of plasma tau phosphorylated at amino acid 181 (p-tau181) and plasma neurofilament light chain (NfL) as biomarkers of cognition in PD. Baseline concentrations of plasma p-tau181 and NfL were measured in a cohort of 136 patients with PD and 63 healthy controls (HC). Forty-seven PD patients were followed up for up to 2 years. Cross-sectional and longitudinal associations between baseline plasma biomarkers and cognitive progression were investigated using linear regression and linear mixed effects models. At baseline, plasma p-tau181 concentration was significantly higher in PD subjects compared with HC (p=0.026). In PD patients, higher plasma NfL was associated with lower MMSE score at baseline, after adjusting for age, sex and education (p=0.027). Baseline plasma NfL also predicted MMSE decline over time in the PD group (p=0.020). No significant association between plasma p-tau181 concentration and baseline or longitudinal cognitive performance was found. While the role of p-tau181 as a diagnostic biomarker for PD and its relationship with cognition need further elucidation, plasma NfL may serve as a feasible, non-invasive biomarker of cognitive progression in PD.
  •  
10.
  • Chatterjee, Pratishtha, et al. (författare)
  • Plasma neurofilament light chain and amyloid-β are associated with the kynurenine pathway metabolites in preclinical Alzheimer's disease.
  • 2019
  • Ingår i: Journal of neuroinflammation. - : Springer Science and Business Media LLC. - 1742-2094. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood markers indicative of neurodegeneration (neurofilament light chain; NFL), Alzheimer's disease amyloid pathology (amyloid-β; Aβ), and neuroinflammation (kynurenine pathway; KP metabolites) have been investigated independently in neurodegenerative diseases. However, the association of these markers of neurodegeneration and AD pathology with neuroinflammation has not been investigated previously. Therefore, the current study examined whether NFL and Aβ correlate with KP metabolites in elderly individuals to provide insight on the association between blood indicators of neurodegeneration and neuroinflammation.Correlations between KP metabolites, measured using liquid chromatography and gas chromatography coupled with mass spectrometry, and plasma NFL and Aβ concentrations, measured using single molecule array (Simoa) assays, were investigated in elderly individuals aged 65-90years, with normal global cognition (Mini-Mental State Examination Score≥26) from the Kerr Anglican Retirement Village Initiative in Ageing Health cohort.A positive correlation between NFL and the kynurenine to tryptophan ratio (K/T) reflecting indoleamine 2,3-dioxygenase activity was observed (r=.451, p<.0001). Positive correlations were also observed between NFL and kynurenine (r=.364, p<.0005), kynurenic acid (r=.384, p<.0001), 3-hydroxykynurenine (r=.246, p=.014), anthranilic acid (r=.311, p=.002), and quinolinic acid (r=.296, p=.003). Further, significant associations were observed between plasma Aβ40 and the K/T (r=.375, p<.0005), kynurenine (r=.374, p<.0005), kynurenic acid (r=.352, p<.0005), anthranilic acid (r=.381, p<.0005), and quinolinic acid (r=.352, p<.0005). Significant associations were also observed between plasma Aβ42 and the K/T ratio (r=.215, p=.034), kynurenic acid (r=.214, p=.035), anthranilic acid (r=.278, p=.006), and quinolinic acid (r=.224, p=.027) in the cohort. On stratifying participants based on their neocortical Aβ load (NAL) status, NFL correlated with KP metabolites irrespective of NAL status; however, associations between plasma Aβ and KP metabolites were only pronounced in individuals with high NAL while associations in individuals with low NAL were nearly absent.The current study shows that KP metabolite changes are associated with biomarker evidence of neurodegeneration. Additionally, the association between KP metabolites and plasma Aβ seems to be NAL status dependent. Finally, the current study suggests that an association between neurodegeneration and neuroinflammation manifests in the periphery, suggesting that preventing cytoskeleton cytotoxicity by KP metabolites may have therapeutic potential.
  •  
11.
  • Gibson, Lucy L, et al. (författare)
  • NMDA Receptor Antibodies and Neuropsychiatric Symptoms in Parkinson's Disease.
  • 2023
  • Ingår i: The Journal of neuropsychiatry and clinical neurosciences. - : American Psychiatric Association Publishing. - 1545-7222 .- 0895-0172. ; 35:3, s. 236-243
  • Tidskriftsartikel (refereegranskat)abstract
    • N-methyl-d-aspartate receptor (NMDAR) encephalitis is an autoantibody-mediated neurological syndrome with prominent cognitive and neuropsychiatric symptoms. The clinical relevance of NMDAR antibodies outside the context of encephalitis was assessed in this study.Plasma from patients with Parkinson's disease (PD) (N=108) and healthy control subjects (N=89) was screened at baseline for immunoglobulin A (IgA), IgM, and IgG NMDAR antibodies, phosphorylated tau 181 (p-tau181), and the neuroaxonal injury marker neurofilament light (NfL). Clinical assessment of the patients included measures of cognition (Mini-Mental State Examination [MMSE]) and neuropsychiatric symptoms (Hospital Anxiety and Depression Scale; Non-Motor Symptoms Scale for Parkinson's Disease). A subgroup of patients (N=61) was followed annually for up to 6 years.Ten (9%) patients with PD tested positive for NMDAR antibodies (IgA, N=5; IgM, N=6; IgG, N=0), and three (3%) healthy control subjects had IgM NMDAR antibodies; IgA NMDAR antibodies were detected significantly more commonly among patients with PD than healthy control subjects (χ2=4.23, df=1, p=0.04). Age, gender, and disease duration were not associated with NMDAR antibody positivity. Longitudinally, antibody-positive patients had significantly greater decline in annual MMSE scores when the analyses were adjusted for education, age, disease duration, p-tau181, NfL, and follow-up duration (adjusted R2=0.26, p=0.01). Neuropsychiatric symptoms were not associated with antibody status, and no associations were seen between NMDAR antibodies and p-tau181 or NfL levels.NMDAR antibodies were associated with greater cognitive impairment over time in patients with PD, independent of other pathological biomarkers, suggesting a potential contribution of these antibodies to cognitive decline in PD.
  •  
12.
  • Gonzalez, Maria C, et al. (författare)
  • Association of Plasma p-tau181 and p-tau231 Concentrations With Cognitive Decline in Patients With Probable Dementia With Lewy Bodies.
  • 2022
  • Ingår i: JAMA neurology. - : American Medical Association (AMA). - 2168-6157 .- 2168-6149. ; 79:1, s. 32-37
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma phosphorylated tau (p-tau) has proven to be an accurate biomarker for Alzheimer disease (AD) pathologic characteristics, offering a less expensive and less invasive alternative to cerebrospinal fluid (CSF) and positron emission tomography biomarkers for amyloid-β and tau. Alzheimer disease comorbid pathologic characteristics are common and are associated with more rapid cognitive decline in patients with dementia with Lewy bodies (DLB); therefore, it is anticipated that plasma p-tau concentrations may have utility in assessing cognitive impairment in individuals with this disorder.To measure the concentrations of plasma p-tau (p-tau181 and p-tau231) and evaluate their associations with cognitive decline in individuals with probable DLB.This multicenter longitudinal cohort study included participants from the European-DLB (E-DLB) Consortium cohort enrolled at 10 centers with harmonized diagnostic procedures from January 1, 2002, to December 31, 2020, with up to 5 years of follow-up. A total of 1122 participants with plasma samples were available. Participants with acute delirium or terminal illness and patients with other previous major psychiatric or neurologic disorders were excluded, leaving a cohort of 987 clinically diagnosed participants with probable DLB (n=371), Parkinson disease (n=204), AD (n=207), as well as healthy controls (HCs) (n=205).The main outcome was plasma p-tau181 and p-tau231 levels measured with in-house single molecule array assays. The Mini-Mental State Examination (MMSE) was used to measure cognition.Among this cohort of 987 patients (512 men [51.9%]; mean [SD] age, 70.0 [8.8] years), patients with DLB did not differ significantly regarding age, sex, or years of education from those in the AD group, but the DLB group was older than the HC group and included more men than the AD and HC groups. Baseline concentrations of plasma p-tau181 and p-tau231 in patients with DLB were significantly higher than those in the HC group but lower than in the AD group and similar to the Parkinson disease group. Higher plasma concentrations of both p-tau markers were found in a subgroup of patients with DLB with abnormal CSF amyloid-β42 levels compared with those with normal levels (difference in the groups in p-tau181, -3.61 pg/mL; 95% CI, -5.43 to -1.79 pg/mL; P=.049; difference in the groups in p-tau231, -2.51 pg/mL; 95% CI, -3.63 to -1.39 pg/mL; P=.02). There was no difference between p-tau181 level and p-tau231 level across confirmed AD pathologic characteristcs based on reduced Aβ42 level in CSF in individuals with DLB. In DLB, a significant association was found between higher plasma p-tau181 and p-tau231 levels and lower MMSE scores at baseline (for p-tau181, -0.092 MMSE points; 95% CI, -0.12 to -0.06 MMSE points; P=.001; for p-tau231, -0.16 MMSE points; 95% CI, -0.21 to -0.12 MMSE points; P<.001), as well as more rapid MMSE decline over time. Plasma p-tau181 level was associated with a decrease of -0.094 MMSE points per year (95% CI, -0.144 to -0.052 MMSE points; P=.02), whereas plasma p-tau231 level was associated with an annual decrease of -0.130 MMSE points (95% CI, -0.201 to -0.071 MMSE points; P=.02), after adjusting for sex and age.This study suggests that plasma p-tau181 and p-tau231 levels may be used as cost-effective and accessible biomarkers to assess cognitive decline in individuals with DLB.
  •  
13.
  • Imarisio, Alberto, et al. (författare)
  • Plasma Cystatin C correlates with plasma NfL levels and predicts disease progression in Parkinson's disease.
  • 2021
  • Ingår i: Neuro-degenerative diseases. - : S. Karger AG. - 1660-2862 .- 1660-2854. ; 21, s. 109-116
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous studies reported increased plasma levels of Cystatin C (Cys-C) in Parkinson's disease (PD) and claimed for a possible association with disease severity and progression. The aim of this study was to evaluate plasma Cys-C in PD and healthy controls (HC) and test its association with markers of peripheral inflammation, neurodegeneration and clinical progression in a longitudinal study.Plasma Cys-C, high-sensitive C-reactive protein (hsCRP), interleukin 6 (IL-6) and Neurofilament Light Chain (NfL) were assessed at the baseline in 71 consecutive non-demented PD and 69 HC. PD patients underwent an extensive motor and cognitive assessment at baseline and after 2 years of follow-up. The association of Cys-C with disease severity was evaluated in a multilinear model adjusted for the effect of age, sex, disease duration and peripheral inflammation.Cys-C levels appeared to be higher in PD compared to controls and correlated with the plasma neuronal marker NfL (r = 0.204, p = 0.046). In longitudinal analyses, PD patients with higher Cys-C levels exhibited faster motor progression at two years of follow-up independently from the peripheral inflammatory profile.Cys-C was associated with higher NfL levels and a remarkably faster motor progression in PD independently from peripheral inflammation. Further studies are needed in order to understand the mechanisms underpinning the association of Cys-C with higher neuronal damage markers in neurodegenerative diseases.
  •  
14.
  • Kim, Min, et al. (författare)
  • Primary fatty amides in plasma associated with brain amyloid burden, hippocampal volume, and memory in the European Medical Information Framework for Alzheimer's Disease biomarker discovery cohort
  • 2019
  • Ingår i: Alzheimer's & Dementia. - : Elsevier. - 1552-5260 .- 1552-5279. ; 15:6, s. 817-827
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: A critical and as-yet unmet need in Alzheimer's disease (AD) is the discovery of peripheral small molecule biomarkers. Given that brain pathology precedes clinical symptom onset, we set out to test whether metabolites in blood associated with pathology as indexed by cerebrospinal fluid (CSF) AD biomarkers.METHODS: This study analyzed 593 plasma samples selected from the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery study, of individuals who were cognitively healthy (n = 242), had mild cognitive impairment (n = 236), or had AD-type dementia (n = 115). Logistic regressions were carried out between plasma metabolites (n = 883) and CSF markers, magnetic resonance imaging, cognition, and clinical diagnosis.RESULTS: Eight metabolites were associated with amyloid β and one with t-tau in CSF, these were primary fatty acid amides (PFAMs), lipokines, and amino acids. From these, PFAMs, glutamate, and aspartate also associated with hippocampal volume and memory.DISCUSSION: PFAMs have been found increased and associated with amyloid β burden in CSF and clinical measures.
  •  
15.
  • Lantero Rodriguez, Juan, et al. (författare)
  • Plasma p-tau181 accurately predicts Alzheimer's disease pathology at least 8years prior to post-mortem and improves the clinical characterisation of cognitive decline.
  • 2020
  • Ingår i: Acta neuropathologica. - : Springer Science and Business Media LLC. - 1432-0533 .- 0001-6322. ; 140:3, s. 267-278
  • Tidskriftsartikel (refereegranskat)abstract
    • The neuropathological confirmation of amyloid-β (Aβ) plaques and tau neurofibrillary tangles (NFT) remains the gold standard for a definitive diagnosis of Alzheimer's disease (AD). Nowadays, the in vivo diagnosis of AD is greatly aided by both cerebrospinal fluid (CSF) and positron emission tomography (PET) biomarkers. Although highly accurate, their broad implementation is restricted by high cost, limited accessibility and invasiveness. We recently developed a high-performance, ultrasensitive immunoassay for the quantification of tau phosphorylated at threonine-181 (p-tau181) in plasma, which identifies AD pathophysiology with high accuracy. However, it remains unclear whether plasma p-tau181, measured years before the death, can predict the eventual neuropathological confirmation of AD, and successfully discriminates AD from non-AD dementia pathologies. We studied a unique cohort of 115 individuals with longitudinal blood collections with clinical evaluation at 8, 4 and 2years prior to neuropathological assessment at death. The results demonstrate that plasma p-tau181 associates better with AD neuropathology and Braak staging than a clinical diagnosis 8years before post-mortem. Moreover, while all patients had a diagnosis of AD dementia during life, plasma p-tau181 proved to discriminate AD from non-AD pathologies with high accuracy (AUC=97.4%, 95% CI=94.1-100%) even 8years before death. Additionally, the longitudinal trajectory of plasma p-tau181 was assessed in all patients. We found that the main increases in plasma p-tau181 occurred between 8 and 4years prior to death in patients with AD neuropathology and later plateauing. In contrast, non-AD pathologies and controls exhibited minor, albeit significant, increases in p-tau181 up until death. Overall, our study demonstrates that plasma p-tau181 is highly predictive and specific of AD neuropathology years before post-mortem examination. These data add further support for the use of plasma p-tau181 to aid clinical management in primary care and recruitment for clinical trials.
  •  
16.
  • Lord, Jodie, et al. (författare)
  • A genome-wide association study of plasma phosphorylated tau181
  • 2021
  • Ingår i: Neurobiology of aging. - : Elsevier BV. - 1558-1497 .- 0197-4580. ; 106
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma phosphorylated tau at threonine-181 (P-tau181) demonstrates promise as an accessible blood-based biomarker specific to Alzheimer's Disease (AD), with levels recently demonstrating high predictive accuracy for AD-relevant pathology. The genetic underpinnings of P-tau181 levels, however, remain elusive. This study presents the first genome-wide association study of plasma P-tau181 in a total sample of 1153 participants from 2 independent cohorts. No loci, other than those within the APOE genomic region (lead variant=rs429358, beta=0.32, p =8.44×10-25) demonstrated association with P-tau181 at genome-wide significance (p < 5×10-08), though rs60872856 on chromosome 2 came close (beta=-0.28, p=3.23×10-07, nearest gene=CYTIP). As the APOE ε4 allele is already a well-established genetic variant associated with AD, this study found no evidence of novel genetic associations relevant to plasma P-tau181, though presents rs60872856 on chromosome 2 as a candidate locus to be further evaluated in future larger size GWAS.
  •  
17.
  • Shi, Liu, et al. (författare)
  • Dickkopf-1 Overexpression in vitro Nominates Candidate Blood Biomarkers Relating to Alzheimer's Disease Pathology.
  • 2020
  • Ingår i: Journal of Alzheimer's disease : JAD. - : IOS Press. - 1875-8908 .- 1387-2877. ; 77:3, s. 1353-1368
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous studies suggest that Dickkopf-1 (DKK1), an inhibitor of Wnt signaling, plays a role in amyloid-induced toxicity and hence Alzheimer's disease (AD). However, the effect of DKK1 expression on protein expression, and whether such proteins are altered in disease, is unknown.We aim to test whether DKK1 induced protein signature obtained in vitro were associated with markers of AD pathology as used in the amyloid/tau/neurodegeneration (ATN) framework as well as with clinical outcomes.We first overexpressed DKK1 in HEK293A cells and quantified 1,128 proteins in cell lysates using aptamer capture arrays (SomaScan) to obtain a protein signature induced by DKK1. We then used the same assay to measure the DKK1-signature proteins in human plasma in two large cohorts, EMIF (n = 785) and ANM (n = 677).We identified a 100-protein signature induced by DKK1 in vitro. Subsets of proteins, along with age and apolipoprotein E ɛ4 genotype distinguished amyloid pathology (A + T-N-, A+T+N-, A+T-N+, and A+T+N+) from no AD pathology (A-T-N-) with an area under the curve of 0.72, 0.81, 0.88, and 0.85, respectively. Furthermore, we found that some signature proteins (e.g., Complement C3 and albumin) were associated with cognitive score and AD diagnosis in both cohorts.Our results add further evidence for a role of DKK regulation of Wnt signaling in AD and suggest that DKK1 induced signature proteins obtained in vitro could reflect theATNframework as well as predict disease severity and progression in vivo.
  •  
18.
  • Shi, Liu, et al. (författare)
  • Discovery and validation of plasma proteomic biomarkers relating to brain amyloid burden by SOMAscan assay.
  • 2019
  • Ingår i: Alzheimer's & dementia : the journal of the Alzheimer's Association. - : Wiley. - 1552-5279 .- 1552-5260. ; 15:11, s. 1478-1488
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma proteins have been widely studied as candidate biomarkers to predict brain amyloid deposition to increase recruitment efficiency in secondary prevention clinical trials for Alzheimer's disease. Most such biomarker studies are targeted to specific proteins or are biased toward high abundant proteins.4001 plasma proteins were measured in two groups of participants (discovery group=516, replication group=365) selected from the European Medical Information Framework for Alzheimer's disease Multimodal Biomarker Discovery study, all of whom had measures of amyloid.A panel of proteins (n=44), along with age and apolipoprotein E (APOE) ε4, predicted brain amyloid deposition with good performance in both the discovery group (area under the curve=0.78) and the replication group (area under the curve=0.68). Furthermore, a causal relationship between amyloid and tau was confirmed by Mendelian randomization.The results suggest that high-dimensional plasma protein testing could be a useful and reproducible approach for measuring brain amyloid deposition.
  •  
19.
  • Shi, Liu, et al. (författare)
  • Replication study of plasma proteins relating to Alzheimer's pathology.
  • 2021
  • Ingår i: Alzheimer's & dementia : the journal of the Alzheimer's Association. - : Wiley. - 1552-5279 .- 1552-5260. ; 17:9, s. 1452-1464
  • Tidskriftsartikel (refereegranskat)abstract
    • This study sought to discover and replicate plasma proteomic biomarkers relating to Alzheimer's disease (AD) including both the "ATN" (amyloid/tau/neurodegeneration) diagnostic framework and clinical diagnosis.Plasma proteins from 972 subjects (372 controls, 409 mild cognitive impairment [MCI], and 191 AD) were measured using both SOMAscan and targeted assays, including 4001 and 25 proteins, respectively.Protein co-expression network analysis of SOMAscan data revealed the relation between proteins and "N" varied across different neurodegeneration markers, indicating that the ATN variants are not interchangeable. Using hub proteins, age, and apolipoprotein E ε4 genotype discriminated AD from controls with an area under the curve (AUC) of 0.81 and MCI convertors from non-convertors with an AUC of 0.74. Targeted assays replicated the relation of four proteins with the ATN framework and clinical diagnosis.Our study suggests that blood proteins can predict the presence of AD pathology as measured in the ATN framework as well as clinical diagnosis.
  •  
20.
  • Simrén, Joel, 1996, et al. (författare)
  • The diagnostic and prognostic capabilities of plasma biomarkers in Alzheimer's disease
  • 2021
  • Ingår i: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 17:7, s. 1145-1156
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: This study investigated the diagnostic and disease-monitoring potential of plasma biomarkers in mild cognitive impairment (MCI) and Alzheimer's disease (AD) dementia and cognitively unimpaired (CU) individuals. Methods: Plasma was analyzed using Simoa assays from 99 CU, 107 MCI, and 103 AD dementia participants. Results: Phosphorylated-tau181 (P-tau181), neurofilament light, amyloid-β (Aβ42/40), Total-tau and Glial fibrillary acidic protein were altered in AD dementia but P-tau181 significantly outperformed all biomarkers in differentiating AD dementia from CU (area under the curve [AUC] = 0.91). P-tau181 was increased in MCI converters compared to non-converters. Higher P-tau181 was associated with steeper cognitive decline and gray matter loss in temporal regions. Longitudinal change of P-tau181 was strongly associated with gray matter loss in the full sample and with Aβ measures in CU individuals. Discussion: P-tau181 detected AD at MCI and dementia stages and was strongly associated with cognitive decline and gray matter loss. These findings highlight the potential value of plasma P-tau181 as a non-invasive and cost-effective diagnostic and prognostic biomarker in AD.
  •  
21.
  • Stamate, Daniel, et al. (författare)
  • A metabolite-based machine learning approach to diagnose Alzheimer-type dementia in blood : Results from the European Medical Information Framework for Alzheimer disease biomarker discovery cohort
  • 2019
  • Ingår i: Alzheimer’s & Dementia. - : John Wiley & Sons. - 2352-8737. ; 5:C, s. 933-938
  • Tidskriftsartikel (refereegranskat)abstract
    • IntroductionMachine learning (ML) may harbor the potential to capture the metabolic complexity in Alzheimer Disease (AD). Here we set out to test the performance of metabolites in blood to categorize AD when compared to CSF biomarkers.MethodsThis study analyzed samples from 242 cognitively normal (CN) people and 115 with AD‐type dementia utilizing plasma metabolites (n = 883). Deep Learning (DL), Extreme Gradient Boosting (XGBoost) and Random Forest (RF) were used to differentiate AD from CN. These models were internally validated using Nested Cross Validation (NCV).ResultsOn the test data, DL produced the AUC of 0.85 (0.80–0.89), XGBoost produced 0.88 (0.86–0.89) and RF produced 0.85 (0.83–0.87). By comparison, CSF measures of amyloid, p‐tau and t‐tau (together with age and gender) produced with XGBoost the AUC values of 0.78, 0.83 and 0.87, respectively.DiscussionThis study showed that plasma metabolites have the potential to match the AUC of well‐established AD CSF biomarkers in a relatively small cohort. Further studies in independent cohorts are needed to validate whether this specific panel of blood metabolites can separate AD from controls, and how specific it is for AD as compared with other neurodegenerative disorders.
  •  
22.
  • Westwood, Sarah, et al. (författare)
  • Validation of Plasma Proteomic Biomarkers Relating to Brain Amyloid Burden in the EMIF-Alzheimer's Disease Multimodal Biomarker Discovery Cohort
  • 2020
  • Ingår i: Journal of Alzheimer's Disease. - : IOS Press. - 1387-2877 .- 1875-8908. ; 74:1, s. 213-225
  • Tidskriftsartikel (refereegranskat)abstract
    • We have previously investigated, discovered, and replicated plasma protein biomarkers for use to triage potential trials participants for PET or cerebrospinal fluid measures of Alzheimer's disease (AD) pathology. This study sought to undertake validation of these candidate plasma biomarkers in a large, multi-center sample collection. Targeted plasma analyses of 34 proteins with prior evidence for prediction of in vivo pathology were conducted in up to 1,000 samples from cognitively healthy elderly individuals, people with mild cognitive impairment, and in patients with AD-type dementia, selected from the EMIF-AD catalogue. Proteins were measured using Luminex xMAP, ELISA, and Meso Scale Discovery assays. Seven proteins replicated in their ability to predict in vivo amyloid pathology. These proteins form a biomarker panel that, along with age, could significantly discriminate between individuals with high and low amyloid pathology with an area under the curve of 0.74. The performance of this biomarker panel remained consistent when tested in apolipoprotein E ɛ4 non-carrier individuals only. This blood-based panel is biologically relevant, measurable using practical immunocapture arrays, and could significantly reduce the cost incurred to clinical trials through screen failure.
  •  
23.
  • Xu, Jin, et al. (författare)
  • Sex-Specific Metabolic Pathways Were Associated with Alzheimer's Disease (AD) Endophenotypes in the European Medical Information Framework for AD Multimodal Biomarker Discovery Cohort
  • 2021
  • Ingår i: Biomedicines. - : MDPI. - 2227-9059. ; 9:11
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: physiological differences between males and females could contribute to the development of Alzheimer's Disease (AD). Here, we examined metabolic pathways that may lead to precision medicine initiatives.METHODS: We explored whether sex modifies the association of 540 plasma metabolites with AD endophenotypes including diagnosis, cerebrospinal fluid (CSF) biomarkers, brain imaging, and cognition using regression analyses for 695 participants (377 females), followed by sex-specific pathway overrepresentation analyses, APOE ε4 stratification and assessment of metabolites' discriminatory performance in AD.RESULTS: In females with AD, vanillylmandelate (tyrosine pathway) was increased and tryptophan betaine (tryptophan pathway) was decreased. The inclusion of these two metabolites (area under curve (AUC) = 0.83, standard error (SE) = 0.029) to a baseline model (covariates + CSF biomarkers, AUC = 0.92, SE = 0.019) resulted in a significantly higher AUC of 0.96 (SE = 0.012). Kynurenate was decreased in males with AD (AUC = 0.679, SE = 0.046).CONCLUSIONS: metabolic sex-specific differences were reported, covering neurotransmission and inflammation pathways with AD endophenotypes. Two metabolites, in pathways related to dopamine and serotonin, were associated to females, paving the way to personalised treatment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-23 av 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy