SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hynsjö L) "

Sökning: WFRF:(Hynsjö L)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Boguszewski, C L, et al. (författare)
  • 22-kD growth hormone exclusion assay: a new approach to measurement of non-22-kD growth hormone isoforms in human blood.
  • 1996
  • Ingår i: European journal of endocrinology. - 0804-4643. ; 135:5, s. 573-82
  • Tidskriftsartikel (refereegranskat)abstract
    • Human growth hormone (GH) exists in a variety of isoforms. In the pituitary, the most abundant isoform is 22-kD GH (22 K GH), while other isoforms (non-22 K GH) are present in variable amounts. In human plasma, the GH heterogeneity contributes to the wide variability in GH levels measured by different immunoassays. The physiological role of the non-22 K GH isoforms is poorly understood, but they may represent a spectrum of agonists or antagonists of the GH receptor. It is possible that increased amounts of non-22 K GH isoforms in the circulation contribute to the growth failure observed in some short children and may be involved in the pathophysiology of acromegaly and other unrelated diseases. Currently, there is no method available to evaluate the ratio of non-22 K GH isoforms to total GH in large sets of serum samples. In this report, a novel assay procedure is described in which monomeric and dimeric isoforms of 22 K GH are removed from serum and non-22 K GH isoforms are quantitated. The 22 K GH exclusion assay (22 K GHEA) was established as a screening method to identify conditions in which the ratio of non-22 K GH isoforms to total GH in human blood is altered. A 22 K GH-specific monoclonal antibody (MCB) is used for binding to 22 K GH in serum. Magnetic beads coated with rat anti-mouse immunoglobulin G and a magnetic device are used to remove the 22K GH-MCB complexes from serum. The non-22 K GH isoforms are measured by a polyclonal antibody-based immunoradiometric assay (GH-IRMA). The assay procedure was optimized systematically by statistical experimental designs. In serum spiked with monomeric or dimeric 22 K GH, the 22 K GH extraction was efficient at GH levels up to 100 microg/l (range 96.3-100%). The intra- and interassay precision for non-22K GH levels of 3.9 microg/l were 2.6% and 8.7%, respectively, while for levels of 0.6 microg/l, which were very close to the detection limits of the assay, the coefficients were 17.0% and 21.6%, respectively. The percentage of non-22 K GH isoforms determined in serum samples from three different groups of subjects showed clearly distinctive values. The 22 K GHEA is a new method for evaluation of non-22 K GH isoforms in human blood under different physiological and pathophysiological conditions.
  •  
2.
  • Larson, Göran, 1953, et al. (författare)
  • Typing for the human lewis blood group system by quantitative fluorescence-activated flow cytometry: large differences in antigen presentation on erythrocytes between A(1), A(2), B, O phenotypes.
  • 1999
  • Ingår i: Vox sanguinis. - 0042-9007. ; 77:4, s. 227-36
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Lewis phenotyping by hemagglutination is an unreliable routine method for Lewis antigen designation. Now genomic typing of the Lewis gene is available. Additionally, flow cytometry has been used for typing. We wanted to compare the results of Lewis typing in healthy individuals using the three methods. MATERIALS AND METHODS: Ninety-three randomly selected plasma donors were genotyped for inactivating Secretor (FUT2) G428A and Lewis (FUT3) T59G, T202C, C314T, G508A and T1067A point mutations. All Le(a+b-) individuals (nonsecretors) were homozygous for the FUT2 G428A mutation and all Le(a-b-) individuals had inactivating mutations on both FUT3 alleles. Fixed erythrocytes were analyzed by fluorescence-activated flow cytometry and the results were compared with hem- agglutination and genotypic data. Antigen availability was expressed as median fluorescence intensity and as percentage positive cells with fluorescence intensities > or =10(2). RESULTS: Using an anti-Le(a) reagent a mean of 99% of erythrocytes from Le(a+b-) individuals and 1% of erythrocytes from Le(a-b-) or Le(a-b+) individuals were stained positive. Using an anti-Le(b) reagent, a mean of 71% of erythrocytes from A(1), 95% from B and 99% from O and A(2) Le(a-b+) individuals and less than 10% of erythrocytes from Le(a-b-) or Le(a+b-) individuals were stained positive. After papain treatment 100% of the erythrocytes from A(1) and A(1)B Le(a-b+) individuals stained positive without increase in background staining. The flow cytometric technique revealed large differences in staining intensities, within each ABO Le(a-b+) subgroup which was not directly correlated to plasma donation frequencies nor to Secretor or Lewis genotypes. CONCLUSION: Flow cytometry may prove valuable as a Lewis blood group typing technique but also as a research tool when investigating Lewis phenotypes of human erythrocytes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy