SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(IBANEZ CF) "

Sökning: WFRF:(IBANEZ CF)

  • Resultat 1-50 av 140
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  • Blokzijl, A, et al. (författare)
  • Cross-talk between the Notch and TGF-beta signaling pathways mediated by interaction of the Notch intracellular domain with Smad3
  • 2003
  • Ingår i: The Journal of cell biology. - : Rockefeller University Press. - 0021-9525 .- 1540-8140. ; 163:4, s. 723-728
  • Tidskriftsartikel (refereegranskat)abstract
    • The Notch and transforming growth factor-β (TGF-β) signaling pathways play critical roles in the control of cell fate during metazoan development. However, mechanisms of cross-talk and signal integration between the two systems are unknown. Here, we demonstrate a functional synergism between Notch and TGF-β signaling in the regulation of Hes-1, a direct target of the Notch pathway. Activation of TGF-β signaling up-regulated Hes-1 expression in vitro and in vivo. This effect was abrogated in myogenic cells by a dominant-negative form of CSL, an essential DNA-binding component of the Notch pathway. TGF-β regulated transcription from the Hes-1 promoter in a Notch-dependent manner, and the intracellular domain of Notch1 (NICD) cooperated synergistically with Smad3, an intracellular transducer of TGF-β signals, to induce the activation of synthetic promoters containing multimerized CSL- or Smad3-binding sites. NICD and Smad3 were shown to interact directly, both in vitro and in cells, in a ligand-dependent manner, and Smad3 could be recruited to CSL-binding sites on DNA in the presence of CSL and NICD. These findings indicate that Notch and TGF-β signals are integrated by direct protein–protein interactions between the signal-transducing intracellular elements from both pathways.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  • Dahlqvist, C, et al. (författare)
  • Functional Notch signaling is required for BMP4-induced inhibition of myogenic differentiation
  • 2003
  • Ingår i: Development (Cambridge, England). - : The Company of Biologists. - 0950-1991 .- 1477-9129. ; 130:24, s. 6089-6099
  • Tidskriftsartikel (refereegranskat)abstract
    • The bone morphogenetic protein (BMP) and Notch signaling pathways are crucial for cellular differentiation. In many cases, the two pathways act similarly; for example, to inhibit myogenic differentiation. It is not known whether this inhibition is caused by distinct mechanisms or by an interplay between Notch and BMP signaling. Here we demonstrate that functional Notch signaling is required for BMP4-mediated block of differentiation of muscle stem cells, i.e. satellite cells and the myogenic cell line C2C12. Addition of BMP4 during induction of differentiation dramatically reduced the number of differentiated satellite and C2C12 cells. Differentiation was substantially restored in BMP4-treated cultures by blocking Notch signaling using either theγ-secretase inhibitor L-685,458 or by introduction of a dominant-negative version of the Notch signal mediator CSL. BMP4 addition to C2C12 cells increased transcription of two immediate Notch responsive genes, Hes1 and Hey1, an effect that was abrogated by L-685,458. A 3 kb Hey1-promoter reporter construct was synergistically activated by the Notch 1 intracellular domain (Notch 1 ICD) and BMP4. The BMP4 mediator SMAD1 mimicked BMP activation of the Hey1 promoter. A synthetic Notch-responsive promoter containing no SMAD1 binding sites responded to SMAD1, indicating that DNA-binding activity of SMAD1 is not required for activation. Accordingly, Notch 1 ICD and SMAD1 interacted in binding experiments in vitro. Thus, the data presented here provide evidence for a direct interaction between the Notch and BMP signaling pathways, and indicate that Notch has a crucial role in the execution of certain aspects of BMP-mediated differentiation control.
  •  
24.
  •  
25.
  •  
26.
  •  
27.
  •  
28.
  •  
29.
  • Fernandez-Suarez, D, et al. (författare)
  • Adult medial habenula neurons require GDNF receptor GFRα1 for synaptic stability and function
  • 2021
  • Ingår i: PLoS biology. - : Public Library of Science (PLoS). - 1545-7885. ; 19:11, s. e3001350-
  • Tidskriftsartikel (refereegranskat)abstract
    • The medial habenula (mHb) is an understudied small brain nucleus linking forebrain and midbrain structures controlling anxiety and fear behaviors. The mechanisms that maintain the structural and functional integrity of mHb neurons and their synapses remain unknown. Using spatiotemporally controlled Cre-mediated recombination in adult mice, we found that the glial cell–derived neurotrophic factor receptor alpha 1 (GFRα1) is required in adult mHb neurons for synaptic stability and function. mHb neurons express some of the highest levels of GFRα1 in the mouse brain, and acute ablation of GFRα1 results in loss of septohabenular and habenulointerpeduncular glutamatergic synapses, with the remaining synapses displaying reduced numbers of presynaptic vesicles. Chemo- and optogenetic studies in mice lacking GFRα1 revealed impaired circuit connectivity, reduced AMPA receptor postsynaptic currents, and abnormally low rectification index (R.I.) of AMPARs, suggesting reduced Ca2+ permeability. Further biochemical and proximity ligation assay (PLA) studies defined the presence of GluA1/GluA2 (Ca2+ impermeable) as well as GluA1/GluA4 (Ca2+ permeable) AMPAR complexes in mHb neurons, as well as clear differences in the levels and association of AMPAR subunits with mHb neurons lacking GFRα1. Finally, acute loss of GFRα1 in adult mHb neurons reduced anxiety-like behavior and potentiated context-based fear responses, phenocopying the effects of lesions to septal projections to the mHb. These results uncover an unexpected function for GFRα1 in the maintenance and function of adult glutamatergic synapses and reveal a potential new mechanism for regulating synaptic plasticity in the septohabenulointerpeduncular pathway and attuning of anxiety and fear behaviors.
  •  
30.
  •  
31.
  • Fernandez-Suarez, D, et al. (författare)
  • MAG induces apoptosis in cerebellar granule neurons through p75NTR demarcating granule layer/white matter boundary
  • 2019
  • Ingår i: Cell death & disease. - : Springer Science and Business Media LLC. - 2041-4889. ; 10:10, s. 732-
  • Tidskriftsartikel (refereegranskat)abstract
    • MAG (Myelin-associated glycoprotein) is a type I transmembrane glycoprotein expressed by Schwann cells and oligodendrocytes, that has been implicated in the control of axonal growth in many neuronal populations including cerebellar granule neurons (CGNs). However, it is unclear whether MAG has other functions in central nervous system, in particular, in cerebellar development and patterning. We find that MAG expression in the cerebellum is compartmentalised resulting in increased MAG protein levels in the cerebellar white matter. MAG induces apoptosis in developing CGNs through p75NTR signalling. Deletion of p75NTR in vivo reduced the number of apoptotic neurons in cerebellar white matter during development leading to reduction in the size of white matter in the adulthood. Furthermore, we show that MAG impairs CGNs neurite outgrowth as consequence of MAG-induced apoptosis in CGNs. Mechanistically, we find that MAG/NgR1-induced cell death is dependent of p75NTR-mediated activation of JNK/cell death signalling pathway. Together, these findings identify the mechanisms by which MAG induces CGNs apoptotic activity, a crucial event that facilitates cerebellar layer refinement during development.
  •  
32.
  •  
33.
  •  
34.
  • Funakoshi, H, et al. (författare)
  • Targeted expression of a multifunctional chimeric neurotrophin in the lesioned sciatic nerve accelerates regeneration of sensory and motor axons
  • 1998
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 95:9, s. 5269-5274
  • Tidskriftsartikel (refereegranskat)abstract
    • Peripheral nerve injury markedly regulates expression of neurotrophins and their receptors in the lesioned nerve. However, the role of endogenously produced neurotrophins in the process of nerve regeneration is unclear. Expression of a multifunctional neurotrophin, pan-neurotrophin-1 (PNT-1), was targeted to the peripheral nerves of transgenic mice by using a gene promoter that is specifically activated after nerve lesion but that is otherwise silent in all other tissues and during development. PNT-1 is a chimeric neurotrophin that combines the active sites of the neurotrophins nerve growth factor, brain-derived neurotrophic factor, and neurotrophin-3 and binds and activates all known neurotrophin receptors. In adult transgenic mice, PNT-1 was highly expressed in transected but not in intact sciatic nerve. Morphometric analyses at the electron microscopy level showed increased and accelerated recovery of axon diameter of myelinated fibers in crushed peripheral nerves of transgenic mice compared with wild type. Examination of nerve bundles in target tissues indicated accelerated reinnervation of foot pad dermis and flexor plantaris muscle in transgenic mice. Moreover, transected sensory and motor axons of transgenic mice showed faster and increased return of neurophysiological responses, suggesting an accelerated rate of axonal elongation. Importantly, transgenic mice also showed a markedly ameliorated loss of skeletal muscle weight, indicating functional regeneration of motor axons. Together, these data provide evidence, at both the anatomical and functional levels, that neurotrophins endogenously produced by the lesioned nerve are capable of significantly accelerating the regeneration of both sensory and motor axons after peripheral nerve damage. In addition, our results indicate that exogenous PNT-1 administration may be an effective therapeutic treatment of peripheral nerve injuries.
  •  
35.
  •  
36.
  •  
37.
  • Gongrich, C, et al. (författare)
  • ALK4 coordinates extracellular and intrinsic signals to regulate development of cortical somatostatin interneurons
  • 2020
  • Ingår i: The Journal of cell biology. - : Rockefeller University Press. - 1540-8140 .- 0021-9525. ; 219:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Although the role of transcription factors in fate specification of cortical interneurons is well established, how these interact with extracellular signals to regulate interneuron development is poorly understood. Here we show that the activin receptor ALK4 is a key regulator of the specification of somatostatin interneurons. Mice lacking ALK4 in GABAergic neurons of the medial ganglionic eminence (MGE) showed marked deficits in distinct subpopulations of somatostatin interneurons from early postnatal stages of cortical development. Specific losses were observed among distinct subtypes of somatostatin+/Reelin+ double-positive cells, including Hpse+ layer IV cells targeting parvalbumin+ interneurons, leading to quantitative alterations in the inhibitory circuitry of this layer. Activin-mediated ALK4 signaling in MGE cells induced interaction of Smad2 with SATB1, a transcription factor critical for somatostatin interneuron development, and promoted SATB1 nuclear translocation and repositioning within the somatostatin gene promoter. These results indicate that intrinsic transcriptional programs interact with extracellular signals present in the environment of MGE cells to regulate cortical interneuron specification.
  •  
38.
  •  
39.
  •  
40.
  •  
41.
  •  
42.
  •  
43.
  •  
44.
  •  
45.
  •  
46.
  • Ibanez, CF (författare)
  • Framework reveals lack of basic-research funds
  • 2004
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 427:6974, s. 485-485
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
47.
  •  
48.
  •  
49.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 140

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy