SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Iacopetti P) "

Sökning: WFRF:(Iacopetti P)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Govaert, Sanne, et al. (författare)
  • Edge influence on understorey plant communities depends on forest management
  • 2020
  • Ingår i: Journal of Vegetation Science. - : Wiley. - 1100-9233 .- 1654-1103. ; 31:2, s. 281-292
  • Tidskriftsartikel (refereegranskat)abstract
    • Questions: Does the influence of forest edges on plant species richness and composition depend on forest management? Do forest specialists and generalists show contrasting patterns?Location: Mesic, deciduous forests across Europe.Methods: Vegetation surveys were performed in forests with three management types (unthinned, thinned 5-10 years ago and recently thinned) along a macroclimatic gradient from Italy to Norway. In each of 45 forests, we established five vegetation plots along a south-facing edge-to-interior gradient (n = 225). Forest specialist, generalist and total species richness, as well as evenness and proportion of specialists, were tested as a function of the management type and distance to the edge while accounting for several environmental variables (e.g. landscape composition and soil characteristics). Magnitude and distance of edge influence were estimated for species richness per management type.Results: Greatest total species richness was found in thinned forests. Edge influence on generalist plant species richness was contingent on the management type, with the smallest decrease in species richness from the edge-to-interior in unthinned forests. In addition, generalist richness increased with the proportion of forests in the surrounding landscape and decreased in forests dominated by tree species that cast more shade. Forest specialist species richness, however, was not affected by management type or distance to the edge, and only increased with pH and increasing proportion of forests in the landscape.Conclusions: Forest thinning affects the plant community composition along edge-to-interior transects of European forests, with richness of forest specialists and generalists responding differently. Therefore, future studies should take the forest management into account when interpreting edge-to-interior because both modify the microclimate, soil processes and deposition of polluting aerosols. This interaction is key to predict the effects of global change on forest plants in landscapes characterized by the mosaic of forest patches and agricultural land that is typical for Europe.
  •  
2.
  • Meeussen, Ccamille, et al. (författare)
  • Initial oak regeneration responses to experimental warming along microclimatic and macroclimatic gradients
  • 2022
  • Ingår i: Plant Biology. - : Wiley. - 1435-8603 .- 1438-8677. ; 24:5, s. 745-757
  • Tidskriftsartikel (refereegranskat)abstract
    • Quercus spp. are one of the most important tree genera in temperate deciduous forests in terms of biodiversity, economic and cultural perspectives.However, natural regeneration of oaks, depending on specific environmental conditions, is still not sufficiently understood.Oak regeneration dynamics are impacted by climate change, but these climate impacts will depend on local forest management and light and temperature conditions.
  •  
3.
  • Perissinotto, D, et al. (författare)
  • Avian neural crest cell migration is diversely regulated by the two major hyaluronan-binding proteoglycans PG-M/versican and aggrecan
  • 2000
  • Ingår i: Development: For advances in developmental biology and stem cells. - 1477-9129. ; 127:13, s. 2823-2842
  • Tidskriftsartikel (refereegranskat)abstract
    • It has been proposed that hyaluronan-binding proteoglycans play an important role as guiding cues during neural crest (NC) cell migration, but their precise function has not been elucidated. In this study, we examine the distribution, structure and putative role of the two major hyaluronan-binding proteoglycans, PG-M/versicans and aggrecan, during the course of avian NC development. PG-M/versicans V0 and V1 are shown to be the prevalent isoforms at initial and advanced phases of NC cell movement, whereas the V2 and V3 transcripts are first detected following gangliogenesis. During NC cell dispersion, mRNAs for PG-M/versicans V0/V1 are transcribed by tissues lining the NC migratory pathways, as well as by tissues delimiting nonpermissive areas. Immunohistochemistry confirm the deposition of the macromolecules in these regions and highlight regional differences in the density of these proteoglycans. PG-M/versicans assembled within the sclerotome rearrange from an initially uniform distribution to a preferentially caudal localization, both at the mRNA and protein level. This reorganization is a direct consequence of the metameric NC cell migration through the rostral portion of the somites. As suggested by previous in situ hybridizations, aggrecan shows a virtually opposite distribution to PG-M/versicans being confined to the perinotochordal ECM and extending dorsolaterally in a segmentally organized manner eventually to the entire spinal cord at axial levels interspacing the ganglia. PG-M/versicans purified from the NC migratory routes are highly polydispersed, have an apparent M(r) of 1,200-2,000 kDa, are primarily substituted with chondroitin-6-sulfates and, upon chondroitinase ABC digestion, are found to be composed of core proteins with apparent M(r )of 360-530, 000. TEM/rotary shadowing analysis of the isolated PG-M/versicans confirmed that they exhibit the characteristic bi-globular shape, have core proteins with sizes predicted for the V0/V1 isoforms and carry relatively few extended glycosaminoglycan chains. Orthotopical implantation of PG-M/versicans immobilized onto transplantable micromembranes tend to 'attract' moving cells toward them, whereas similar implantations of a notochordal type-aggrecan retain both single and cohorts of moving NC cells in close proximity of the implant and thereby perturb their spatiotemporal migratory pattern. NC cells fail to migrate through three-dimensional collagen type I-aggrecan substrata in vitro, but locomote in a haptotactic manner through collagen type I-PG-M/versican V0 substrata via engagement of HNK-1 antigen-bearing cell surface components. The present data suggest that PG-M/versicans and notochordal aggrecan exert divergent guiding functions during NC cell dispersion, which are mediated by both their core proteins and glycosaminoglycan side chains and may involve 'haptotactic-like' motility phenomena. Whereas aggrecan defines strictly impenetrable embryonic areas, PG-M/versicans are central components of the NC migratory pathways favoring the directed movement of the cells.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy