SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ihalainen J. A.) "

Sökning: WFRF:(Ihalainen J. A.)

  • Resultat 1-30 av 30
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Woitowich, N. C., et al. (författare)
  • Structural basis for light control of cell development revealed by crystal structures of a myxobacterial phytochrome
  • 2018
  • Ingår i: Iucrj. - : International Union of Crystallography (IUCr). - 2052-2525. ; 5:Part 5, s. 619-634
  • Tidskriftsartikel (refereegranskat)abstract
    • Phytochromes are red-light photoreceptors that were first characterized in plants, with homologs in photosynthetic and non-photosynthetic bacteria known as bacteriophytochromes (BphPs). Upon absorption of light, BphPs interconvert between two states denoted Pr and Pfr with distinct absorption spectra in the red and far-red. They have recently been engineered as enzymatic photoswitches for fluorescent-marker applications in non-invasive tissue imaging of mammals. This article presents cryo- and room-temperature crystal structures of the unusual phytochrome from the non-photosynthetic myxobacterium Stigmatella aurantiaca (SaBphP1) and reveals its role in the fruitingbody formation of this photomorphogenic bacterium. SaBphP1 lacks a conserved histidine (His) in the chromophore-binding domain that stabilizes the Pr state in the classical BphPs. Instead it contains a threonine (Thr), a feature that is restricted to several myxobacterial phytochromes and is not evolutionarily understood. SaBphP1 structures of the chromophore binding domain (CBD) and the complete photosensory core module (PCM) in wild-type and Thr-to-His mutant forms reveal details of the molecular mechanism of the Pr/Pfr transition associated with the physiological response of this myxobacterium to red light. Specifically, key structural differences in the CBD and PCM between the wild-type and the Thr-to-His mutant involve essential chromophore contacts with proximal amino acids, and point to how the photosignal is transduced through the rest of the protein, impacting the essential enzymatic activity in the photomorphogenic response of this myxobacterium.
  •  
2.
  • Edlund, Petra, et al. (författare)
  • The room temperature crystal structure of a bacterial phytochrome determined by serial femtosecond crystallography
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Phytochromes are a family of photoreceptors that control light responses of plants, fungi and bacteria. A sequence of structural changes, which is not yet fully understood, leads to activation of an output domain. Time-resolved serial femtosecond crystallography (SFX) can potentially shine light on these conformational changes. Here we report the room temperature crystal structure of the chromophore-binding domains of the Deinococcus radiodurans phytochrome at 2.1 angstrom resolution. The structure was obtained by serial femtosecond X-ray crystallography from microcrystals at an X-ray free electron laser. We find overall good agreement compared to a crystal structure at 1.35 angstrom resolution derived from conventional crystallography at cryogenic temperatures, which we also report here. The thioether linkage between chromophore and protein is subject to positional ambiguity at the synchrotron, but is fully resolved with SFX. The study paves the way for time-resolved structural investigations of the phytochrome photocycle with time-resolved SFX.
  •  
3.
  • Fantini, R, et al. (författare)
  • EU FP7 INFSO-ICT-317669 METIS, D3.2 First performance results for multi-node/multi-antenna transmission technologies
  • 2014
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • This deliverable describes the current results of the multi-node/multi-antenna technologies investigated within METIS and analyses the interactions within and outside Work Package 3. Furthermore, it identifies the most promising technologies based on the current state of obtained results. This document provides a brief overview of the results in its first part. The second part, namely the Appendix, further details the results, describes the simulation alignment efforts conducted in the Work Package and the interaction of the Test Cases. The results described here show that the investigations conducted in Work Package 3 are maturing resulting in valuable innovative solutions for future 5G systems.
  •  
4.
  • Berntsson, Oskar, 1989, et al. (författare)
  • Sequential conformational transitions and alpha-helical supercoiling regulate a sensor histidine kinase
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Sensor histidine kinases are central to sensing in bacteria and in plants. They usually contain sensor, linker, and kinase modules and the structure of many of these components is known. However, it is unclear how the kinase module is structurally regulated. Here, we use nano- to millisecond time-resolved X-ray scattering to visualize the solution structural changes that occur when the light-sensitive model histidine kinase YF1 is activated by blue light. We find that the coiled coil linker and the attached histidine kinase domains undergo a left handed rotation within microseconds. In a much slower second step, the kinase domains rearrange internally. This structural mechanism presents a template for signal transduction in sensor histidine kinases.
  •  
5.
  • Carvalho, E. de, et al. (författare)
  • EU FP7 INFSO-ICT-317669 METIS, D3.1 Positioning of multi-node/multi-antenna technologies
  • 2013
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • This document describes the research activity in multi-node/multi-antenna technologies within METIS and positions it with respect to the state-of-the-art in the academic literature and in the standardization bodies. Based on the state-of-the-art and as well as on the METIS objectives,we set the research objectives and we group the different activities (or technology components) into research clusters with similar research objectives. The technologycomponents and the research objectives have been set to achieve an ambidextrous purpose. On one side we aim at providing the METIS system with those technological components that are a natural but non-trivial evolution of 4G. On the other side, we aim at seeking for disruptivetechnologies that could radically change 5G with respect to 4G. Moreover, we mapped the different technology components to METIS’ other activities and to the overall goals of theproject.
  •  
6.
  • Haapala, E. A., et al. (författare)
  • Associations of physical activity, sedentary time, and diet quality with biomarkers of inflammation in children
  • 2022
  • Ingår i: European Journal of Sport Science. - : Informa UK Limited. - 1746-1391 .- 1536-7290. ; 22:6, s. 906-915
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated the associations of physical activity (PA), sedentary time (ST), and diet quality with biomarkers of inflammation in 390 children (192 girls, 198 boys) aged 6–8 years. PA energy expenditure (PAEE), light PA, moderate PA (MPA), vigorous PA (VPA), moderate-to-vigorous PA (MVPA), and ST were assessed by combined movement and heart rate sensor. Finnish Children Healthy Eating Index was calculated using data from 4 d food records. Body fat percentage (BF%) was measured by dual-energy X-ray absorptiometry. High-sensitivity C-reactive protein (Hs-CRP), leptin, interleukin-6 (IL-6), adiponectin, tumour necrosis factor-α, and glycoprotein acetyls were measured from fasting blood samples. PAEE, MPA, VPA, and MVPA were inversely associated with hs-CRP (β=−191 to −139, 95% CI=−0.294 to −0.024), leptin (β=−0.409 to −0.301, 95% CI=−0.499 to −0.107), IL-6 (β=−0.136 to −0.104, 95% CI=−0.240 to −0.001) and PAEE, MPA, and MVPA were inversely associated with glycoprotein acetyls (β=−0.117 to −0.103, 95% CI=−0.213 to −0.001). ST was directly associated with hs-CRP (β=0.170, 95% CI=0.070–0.269), leptin (β=0.355, 95% CI=0.265–0.445), and IL-6 (β=0.105, 95% CI=0.005–0.205). VPA was inversely associated with hs-CRP, leptin, and IL-6 in children with higher BF% (β=−0.344 to −0.181, 95% CI=−0.477 to −0.033) but not among children with lower BF% (β=−0.007–0.033, 95% CI=−0.183–0.184). In conclusion, PA was inversely and ST directly associated with circulating levels of biomarkers of inflammation among children. Furthermore, we observed that PA was inversely associated with these biomarkers for inflammation in children with a higher BF%. Highlights Systemic inflammation, as indicated by increased circulating concentrations of biomarkers for inflammation, may be important in causal pathways leading to insulin resistance, sub-clinical atherosclerosis, and eventually clinical manifestations of cardiovascular diseases. Higher levels of physical activity and lower levels of sedentary time were associated with more favourable inflammatory profile. Body fat percentage modified these associations and especially vigorous intensity physical activity was inversely associated with biomarkers of inflammation on children with higher body fat percentage but not in children with lower body fat percentage. 
  •  
7.
  • Herukka, S. K., et al. (författare)
  • Amyloid-beta and Tau Dynamics in Human Brain Interstitial Fluid in Patients with Suspected Normal Pressure Hydrocephalus
  • 2015
  • Ingår i: Journal of Alzheimers Disease. - : IOS Press. - 1387-2877 .- 1875-8908. ; 46:1, s. 261-269
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Amyloid-beta (A beta(1-42)), total tau (T-tau), and phosphorylated tau (P-tau(181)) in the cerebrospinal fluid (CSF) are the most promising biomarkers of Alzheimer's disease (AD). Still, little is known about the dynamics of these molecules in the living brain. In a transgenic mouse brain, soluble A beta decreases with increasing age and advanced A beta pathology as seen similarly in CSF. Objective: To assess the relationship between AD-related pathological changes in human brain tissue, ventricular and lumbar CSF, and brain interstitial fluid (ISF). Methods: Altogether 11 patients with suspected idiopathic normal pressure hydrocephalus underwent frontal cortical brain biopsy, 24-h intraventricular pressure monitoring, and a microdialysis procedure. AD-related biomarkers were analyzed from brain tissue, CSF, and ISF. Results: ISF T-tau levels decreased strongly within the first 12 h, then plateauing until the end of the experiment. A beta(1-42) and P-tau(181) remained stable during the experiment (n = 3). T-tau and P-tau were higher in the ISF than in ventricular or lumbar CSF, while A beta(1-42) levels were within similar range in both CSF and ISF samples. ISF P-tau correlated with the ventricular CSF T-tau (r = 0.70, p = 0.017) and P-tau(181) (r = 0.64, p = 0.034). Five patients with amyloid pathology in the brain biopsy tended to reveal lower ISF A beta(1-42) levels than those six without amyloid pathology. Conclusions: This is the first study to report ISF A beta and tau levels in the human brain without significant brain injury. The set-up used enables sampling from the brain ISF for at least 24 h without causing adverse effects due to the microdialysis procedure to follow the dynamics of the key molecules in AD pathogenesis in the living brain at various stages of the disease.
  •  
8.
  • Björling, Alexander, 1983, et al. (författare)
  • Structural photoactivation of a full-length bacterial phytochrome
  • 2016
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 2:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Phytochromes are light sensor proteins found in plants, bacteria, and fungi. They function by converting a photon absorption event into a conformational signal that propagates from the chromophore through the entire protein. However, the structure of the photoactivated state and the conformational changes that lead to it are not known. We report time-resolved x-ray scattering of the full-length phytochrome from Deinococcus radiodurans on micro-and millisecond time scales. We identify a twist of the histidine kinase output domains with respect to the chromophore-binding domains as the dominant change between the photoactivated and resting states. The time-resolved data further show that the structural changes up to the microsecond time scales are small and localized in the chromophore-binding domains. The global structural change occurs within a few milliseconds, coinciding with the formation of the spectroscopic meta-Rc state. Our findings establish key elements of the signaling mechanism of full-length bacterial phytochromes.
  •  
9.
  • Björling, Alexander, 1983, et al. (författare)
  • Ubiquitous Structural Signaling in Bacterial Phytochromes
  • 2015
  • Ingår i: Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 6:17, s. 3379-3383
  • Tidskriftsartikel (refereegranskat)abstract
    • The phytochrome family of light-switchable proteins has long been studied by biochemical, spectroscopic and crystallographic means, while a direct probe for global conformational signal propagation has been lacking. Using solution X-ray scattering, we find that the photosensory cores of several bacterial phytochromes undergo similar large-scale structural changes upon red-light excitation. The data establish that phytochromes with ordinary and inverted photocycles share a structural signaling mechanism and that a particular conserved histidine, previously proposed to be involved in signal propagation, in fact tunes photoresponse.
  •  
10.
  • Multamaki, E., et al. (författare)
  • Comparative analysis of two paradigm bacteriophytochromes reveals opposite functionalities in two-component signaling
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacterial phytochrome photoreceptors usually belong to two-component signaling systems which transmit environmental stimuli to a response regulator through a histidine kinase domain. Phytochromes switch between red light-absorbing and far-red light-absorbing states. Despite exhibiting extensive structural responses during this transition, the model bacteriophytochrome from Deinococcus radiodurans (DrBphP) lacks detectable kinase activity. Here, we resolve this long-standing conundrum by comparatively analyzing the interactions and output activities of DrBphP and a bacteriophytochrome from Agrobacterium fabrum (Agp1). Whereas Agp1 acts as a conventional histidine kinase, we identify DrBphP as a light-sensitive phosphatase. While Agp1 binds its cognate response regulator only transiently, DrBphP does so strongly, which is rationalized at the structural level. Our data pinpoint two key residues affecting the balance between kinase and phosphatase activities, which immediately bears on photoreception and two-component signaling. The opposing output activities in two highly similar bacteriophytochromes suggest the use of light-controllable histidine kinases and phosphatases for optogenetics. The bacteriophytochrome DrBphP from Deinococcus radiodurans shows high sequence homology to the histidine kinase Agp1 from Agrobacterium fabrum but lacks kinase activity. Here, the authors structurally and biochemically analyse DrBphP and Agp1, showing that DrBphP is a light-activatable phosphatase.
  •  
11.
  •  
12.
  • Takala, H., et al. (författare)
  • On the (un)coupling of the chromophore, tongue interactions, and overall conformation in a bacterial phytochrome
  • 2018
  • Ingår i: Journal of Biological Chemistry. - 0021-9258. ; 293:21, s. 8161-8172
  • Tidskriftsartikel (refereegranskat)abstract
    • Phytochromes are photoreceptors in plants, fungi, and various microorganisms and cycle between metastable red light-absorbing (Pr) and far-red light-absorbing (Pfr) states. Their light responses are thought to follow a conserved structural mechanism that is triggered by isomerization of the chromophore. Downstream structural changes involve refolding of the so-called tongue extension of the phytochrome-specific GAF-related (PHY) domain of the photoreceptor. The tongue is connected to the chromophore by conserved DIP and PRXSF motifs and a conserved tyrosine, but the role of these residues in signal transduction is not clear. Here, we examine the tongue interactions and their interplay with the chromophore by substituting the conserved tyrosine (Tyr(263)) in the phytochrome from the extremophile bacterium Deinococcus radiodurans with phenylalanine. Using optical and FTIR spectroscopy, X-ray solution scattering, and crystallography of chromophore-binding domain (CBD) and CBD-PHY fragments, we show that the absence of the Tyr(263) hydroxyl destabilizes the -sheet conformation of the tongue. This allowed the phytochrome to adopt an -helical tongue conformation regardless of the chromophore state, hence distorting the activity state of the protein. Our crystal structures further revealed that water interactions are missing in the Y263F mutant, correlating with a decrease of the photoconversion yield and underpinning the functional role of Tyr(263) in phytochrome conformational changes. We propose a model in which isomerization of the chromophore, refolding of the tongue, and globular conformational changes are represented as weakly coupled equilibria. The results also suggest that the phytochromes have several redundant signaling routes.
  •  
13.
  • Berntsson, Oskar, 1989, et al. (författare)
  • Photoactivation of Drosophila melanogaster cryptochrome through sequential conformational transitions
  • 2019
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 5:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Cryptochromes are blue-light photoreceptor proteins, which provide input to circadian clocks. The cryptochrome from Drosophila melanogaster (DmCry) modulates the degradation of Timeless and itself. It is unclear how light absorption by the chromophore and the subsequent redox reactions trigger these events. Here, we use nano- to millisecond time-resolved x-ray solution scattering to reveal the light-activated conformational changes in DmCry and the related (6-4) photolyase. DmCry undergoes a series of structural changes, culminating in the release of the carboxyl-terminal tail (CTT). The photolyase has a simpler structural response. We find that the CTT release in DmCry depends on pH. Mutation of a conserved histidine, important for the biochemical activity of DmCry, does not affect transduction of the structural signal to the CTT. Instead, molecular dynamics simulations suggest that it stabilizes the CTT in the resting-state conformation. Our structural photocycle unravels the first molecular events of signal transduction in an animal cryptochrome.
  •  
14.
  • Cellini, Andrea, 1991, et al. (författare)
  • The three-dimensional structure of Drosophila melanogaster (6-4) photolyase at room temperature
  • 2021
  • Ingår i: Acta Crystallographica Section D-Structural Biology. - : International Union of Crystallography (IUCr). - 2059-7983. ; 77, s. 1001-1009
  • Tidskriftsartikel (refereegranskat)abstract
    • (6-4) photolyases are flavoproteins that belong to the photolyase/cryptochrome family. Their function is to repair DNA lesions using visible light. Here, crystal structures of Drosophila melanogaster (6-4) photolyase [Dm(6-4)photolyase] at room and cryogenic temperatures are reported. The room-temperature structure was solved to 2.27 angstrom resolution and was obtained by serial femtosecond crystallography (SFX) using an X-ray free-electron laser. The crystallization and preparation conditions are also reported. The cryogenic structure was solved to 1.79 angstrom resolution using conventional X-ray crystallography. The structures agree with each other, indicating that the structural information obtained from crystallography at cryogenic temperature also applies at room temperature. Furthermore, UV-Vis absorption spectroscopy confirms that Dm(6-4)photolyase is photoactive in the crystals, giving a green light to time-resolved SFX studies on the protein, which can reveal the structural mechanism of the photoactivated protein in DNA repair.
  •  
15.
  • Claesson, Elin, 1989, et al. (författare)
  • The primary structural photoresponse of phytochrome proteins captured by a femtosecond X-ray laser
  • 2020
  • Ingår i: eLife. - 2050-084X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Phytochrome proteins control the growth, reproduction, and photosynthesis of plants, fungi, and bacteria. Light is detected by a bilin cofactor, but it remains elusive how this leads to activation of the protein through structural changes. We present serial femtosecond X-ray crystallographic data of the chromophore-binding domains of a bacterial phytochrome at delay times of 1 ps and 10 ps after photoexcitation. The data reveal a twist of the D-ring, which leads to partial detachment of the chromophore from the protein. Unexpectedly, the conserved so-called pyrrole water is photodissociated from the chromophore, concomitant with movement of the A-ring and a key signaling aspartate. The changes are wired together by ultrafast backbone and water movements around the chromophore, channeling them into signal transduction towards the output domains. We suggest that the observed collective changes are important for the phytochrome photoresponse, explaining the earliest steps of how plants, fungi and bacteria sense red light.
  •  
16.
  •  
17.
  • Ihalainen, J. A., et al. (författare)
  • Chromophore-Protein Interplay during the Phytochrome Photocycle Revealed by Step-Scan FTIR Spectroscopy
  • 2018
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 140:39, s. 12396-12404
  • Tidskriftsartikel (refereegranskat)abstract
    • Phytochrome proteins regulate many photo-responses of plants and microorganisms. Light absorption causes isomerization of the biliverdin chromophore, which triggers a series of structural changes to activate the signaling domains of the protein. However, the structural changes are elusive, and therefore the molecular mechanism of signal transduction remains poorly understood. Here, we apply twocolor step-scan infrared spectroscopy to the bacteriophytochrome from Deinococcus radiodurans. We show by recordings in H2O and D2O that the hydrogen bonds to the biliverdin D-ring carbonyl become disordered in the first intermediate (Lumi-R) forming a dynamic microenvironment, then completely detach in the second intermediate (Meta-R), and finally reform in the signaling state (Pfr). The spectra reveal via isotope labeling that the refolding of the conserved "PHY-tongue" region occurs with the last transition between Meta-R and Pfr. Additional changes in the protein backbone are detected already within microseconds in Lumi-R Aided by molecular dynamics simulations, we find that a strictly conserved salt bridge between an arginine of the PHY tongue and an aspartate of the chromophore binding domains is broken in Lumi-R and the arginine is recruited to the D-ring C=O. This rationalizes how isomerization of the chromophore is linked to the global structural rearrangement in the sensory receptor. Our findings advance the structural understanding of phytochrome photoactivation.
  •  
18.
  • Lenngren, N., et al. (författare)
  • Coordination of the biliverdin D-ring in bacteriophytochromes
  • 2018
  • Ingår i: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 20:27, s. 18216-18225
  • Tidskriftsartikel (refereegranskat)abstract
    • Phytochrome proteins translate light into biochemical signals in plants, fungi and microorganisms. Light cues are absorbed by a bilin chromophore, leading to an isomerization and a rotation of the D-ring. This relays the signal to the protein matrix. A set of amino acids, which is conserved across the phytochrome superfamily, holds the chromophore in the binding pocket. However, the functional role of many of these amino acids is not yet understood. Here, we investigate the hydrogen bonding network which surrounds the D-ring of the chromophore in the resting (Pr) state. We use UV/vis spectroscopy, infrared absorption spectroscopy and X-ray crystallography to compare the photosensory domains from Deinococcus radiodurans, the phytochrome 1 from Stigmatella aurantiaca, and a D. radiodurans H290T mutant. In the latter two, an otherwise conserved histidine next to the D-ring is replaced by a threonine. Our infrared absorption data indicate that the carbonyl of the D-ring is more strongly coordinated by hydrogen bonds when the histidine is missing. This is in apparent contrast with the crystal structure of the PAS-GAF domain of phytochrome 1 from S. aurantiaca (pdb code 4RPW), which did not resolve any obvious binding partners for the D-ring carbonyl. We present a new crystal structure of the H290T mutant of the PAS-GAF from D. radiodurans phytochrome. The 1.4 A-resolution structure reveals additional water molecules, which fill the void created by the mutation. Two of the waters are significantly disordered, suggesting that flexibility might be important for the photoconversion. Finally, we report a spectral analysis which quantitatively explains why the histidine-less phytochromes do not reach equal Pfr-type absorption in the photoequilibrium compared to the Deinococcus radiodurans wild-type protein. The study highlights the importance of water molecules and the hydrogen bonding network around the chromophore for controlling the isomerization reaction and spectral properties of phytochromes.
  •  
19.
  •  
20.
  •  
21.
  • Shroff, Sailee, et al. (författare)
  • Antiviral action of a functionalized plastic surface against human coronaviruses
  • 2024
  • Ingår i: Microbiology Spectrum. - : American Society for Microbiology. - 2165-0497. ; 12:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Viruses may persist on solid surfaces for long periods, which may contribute to indirect transmission. Thus, it is imperative to develop functionalized surfaces that will lower the infectious viral load in everyday life. Here, we have tested a plastic surface functionalized with tall oil rosin against the seasonal human coronavirus OC43 as well as severe acute respiratory syndrome coronavirus 2. All tested non-functionalized plastic surfaces showed virus persistence up to 48 h. In contrast, the functionalized plastic showed good antiviral action already within 15 min of contact and excellent efficacy after 30 min over 90% humidity. Excellent antiviral effects were also observed at lower humidities of 20% and 40%. Despite the hydrophilic nature of the functionalized plastic, viruses did not adhere strongly to it. According to helium ion microscopy, viruses appeared flatter on the rosin-functionalized surface, but after flushing away from the rosin-functionalized surface, they showed no apparent structural changes when imaged by transmission electron microscopy of cryogenic or negatively stained specimens or by atomic force microscopy. Flushed viruses were able to bind to their host cell surface and enter endosomes, suggesting that the fusion with the endosomal membrane was halted. The eluted rosin from the functionalized surface demonstrated its ability to inactivate viruses, indicating that the antiviral efficacy relied on the active leaching of the antiviral substances, which acted on the viruses coming into contact. The rosin-functionalized plastic thus serves as a promising candidate as an antiviral surface for enveloped viruses.IMPORTANCEDuring seasonal and viral outbreaks, the implementation of antiviral plastics can serve as a proactive strategy to limit the spread of viruses from contaminated surfaces, complementing existing hygiene practices. In this study, we show the efficacy of a rosin-functionalized plastic surface that kills the viral infectivity of human coronaviruses within 15 min of contact time, irrespective of the humidity levels. In contrast, non-functionalized plastic surfaces retain viral infectivity for an extended period of up to 48 h. The transient attachment on the surface or the leached active components do not cause major structural changes in the virus or prevent receptor binding; instead, they effectively block viral infection at the endosomal stage. During seasonal and viral outbreaks, the implementation of antiviral plastics can serve as a proactive strategy to limit the spread of viruses from contaminated surfaces, complementing existing hygiene practices. In this study, we show the efficacy of a rosin-functionalized plastic surface that kills the viral infectivity of human coronaviruses within 15 min of contact time, irrespective of the humidity levels. In contrast, non-functionalized plastic surfaces retain viral infectivity for an extended period of up to 48 h. The transient attachment on the surface or the leached active components do not cause major structural changes in the virus or prevent receptor binding; instead, they effectively block viral infection at the endosomal stage.
  •  
22.
  • Takala, Heikki, et al. (författare)
  • Light-induced structural changes in a monomeric bacteriophytochrome
  • 2016
  • Ingår i: Structural Dynamics. - : AIP Publishing. - 2329-7778. ; 3:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Phytochromes sense red light in plants and various microorganism. Light absorption causes structural changes within the protein, which alter its biochemical activity. Bacterial phytochromes are dimeric proteins, but the functional relevance of this arrangement remains unclear. Here, we use time-resolved X-ray scattering to reveal the solution structural change of a monomeric variant of the photosensory core module of the phytochrome from Deinococcus radiodurans. The data reveal two motions, a bend and a twist of the PHY domain with respect to the chromophore-binding domains. Infrared spectroscopy shows the refolding of the PHY tongue. We conclude that a monomer of the phytochrome photosensory core is sufficient to perform the light-induced structural changes. This implies that allosteric cooperation with the other monomer is not needed for structural activation. The dimeric arrangement may instead be intrinsic to the biochemical output domains of bacterial phytochromes. © Author(s) 2016.
  •  
23.
  • Takala, Heikki, et al. (författare)
  • Signal amplification and transduction in phytochrome photosensors
  • 2014
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 509:7499, s. 245-248
  • Tidskriftsartikel (refereegranskat)abstract
    • Sensory proteins must relay structural signals from the sensory site over large distances to regulatory output domains. Phytochromes are a major family of red-light-sensing kinases that control diverse cellular functions in plants, bacteria and fungi(1-9). Bacterial phytochromes consist of a photosensory core and a carboxy-terminal regulatory domain(10,11). Structures of photosensory cores are reported in the resting state(12-18) and conformational responses to light activation have been proposed in the vicinity of the chromophore(19-23). However, the structure of the signalling state and the mechanism of downstream signal relay through the photosensory core remain elusive. Here we report crystal and solution structures of the resting and activated states of the photosensory core of the bacteriophytochrome from Deinococcus radiodurans. The structures show an open and closed form of the dimeric protein for the activated and resting states, respectively. This nanometre-scale rearrangement is controlled by refolding of an evolutionarily conserved 'tongue', which is in contact with the chromophore. The findings reveal an unusual mechanism in which atomic-scale conformational changes around the chromophore are first amplified into ana angstrom-scale distance change in the tongue, and further grow into a nanometre-scale conformational signal. The structural mechanism is a blueprint for understanding how phytochromes connect to the cellular signalling network.
  •  
24.
  • Gustavsson, Emil, 1987, et al. (författare)
  • Modulation of Structural Heterogeneity Controls Phytochrome Photoswitching
  • 2020
  • Ingår i: Biophysical Journal. - : Elsevier BV. - 0006-3495 .- 1542-0086. ; 118:2, s. 415-421
  • Tidskriftsartikel (refereegranskat)abstract
    • Phytochromes sense red/far-red light and control many biological processes in plants, fungi, and bacteria. Although the crystal structures of dark- and light-adapted states have been determined, the molecular mechanisms underlying photoactivation remain elusive. Here, we demonstrate that the conserved tongue region of the PHY domain of a 57-kDa photosensory module of Deinococcus radiodurans phytochrome changes from a structurally heterogeneous dark state to an ordered, light-activated state. The results were obtained in solution by utilizing a laser-triggered activation approach detected on the atomic level with high-resolution protein NMR spectroscopy. The data suggest that photosignaling of phytochromes relies on careful modulation of structural heterogeneity of the PHY tongue.
  •  
25.
  • Ihalainen, J, et al. (författare)
  • Towards automatic detection of point mutations : use of scintillating microplates in solid-phase minisequencing
  • 1994
  • Ingår i: BioTechniques. - 0736-6205 .- 1940-9818. ; 16:5, s. 938-943
  • Tidskriftsartikel (refereegranskat)abstract
    • Simplification of molecular genetic techniques is one of the main features of large-scale clinical applications of mutation analysis. The solid-phase minisequencing method, which is based on single-nucleotide primer extension by a DNA polymerase on a solid support, is an easy way of detecting point mutations of previously known locations. Here the procedure was further simplified by the use of microplates made of scintillating plastics, a microplate format scintillation counter and an automatic microplate washer. DNA samples from patients with either a hereditary aspartylglucosaminidase (AGA) gene point mutation or an acquired N-ras gene mutation were analyzed by three different minisequencing detection procedures utilizing tritiated nucleotides. The new counting method with scintillating plates was compared to traditional liquid scintillation counting in scintillation vials or to another microplate format procedure, which requires addition of scintillation liquid. In all three methods, normal individuals, heterozygous carriers of the AGA mutation and homozygous patients could be unequivocally discriminated. The N-ras mutation in leukemic blasts could also be detected with high resolution. The coefficients of variation and reproducibility of the scintillating microplate method were almost identical to those of the traditional liquid scintillation assay, which was used as a reference method. The technical innovations adopted here for performing minisequencing assays reduce significantly the labor required without affecting the quality of the results.
  •  
26.
  • Kübel, Joachim, 1988, et al. (författare)
  • Transient IR spectroscopy identifies key interactions and unravels new intermediates in the photocycle of a bacterial phytochrome
  • 2020
  • Ingår i: Physical chemistry chemical physics : PCCP. - : Royal Society of Chemistry (RSC). - 1463-9084 .- 1463-9076. ; 22:17, s. 9195-9203
  • Tidskriftsartikel (refereegranskat)abstract
    • Phytochromes are photosensory proteins in plants, fungi, and bacteria, which detect red- and far-red light. They undergo a transition between the resting (Pr) and photoactivated (Pfr) states. In bacterial phytochromes, the Pr-to-Pfr transition is facilitated by two intermediate states, called Lumi-R and Meta-R. The molecular structures of the protein in these states are not known and the molecular mechanism of photoconversion is not understood. Here, we apply transient infrared absorption spectroscopy to study the photocycle of the wild-type and Y263F mutant of the phytochrome from Deinococcus radiodurans (DrBphP) from nano- to milliseconds. We identify two sequentially forming Lumi-R states which differ in the local structure surrounding the carbonyl group of the biliverdin D-ring. We also find that the tyrosine at position 263 alters local structure and dynamics around the D-ring and causes an increased rate of Pfr formation. The results shed new light on the mechanism of light-signalling in phytochrome proteins.
  •  
27.
  •  
28.
  • Taipale, Ritva S., et al. (författare)
  • Cold-water immersion combined with active recovery is equally as effective as active recovery during 10 weeks of high-intensity combined strength and endurance training in men
  • 2019
  • Ingår i: Biomedical Human Kinetics. - : Walter de Gruyter GmbH. - 2080-2234. ; 11:1, s. 189-192
  • Tidskriftsartikel (refereegranskat)abstract
    • Study aim: The purpose of this study was to compare the effects of cold-water immersion (CWI) vs. active recovery performed after each individual strength and endurance training session over a 10-week period of high-intensity combined strength and endurance training. Materials and methods: Seventeen healthy men completed 10 weeks of high-intensity combined strength and endurance training. One group (AR, n = 10) completed active recovery that included 15 minutes of running at 30-40% VO2max after every strength training session while the other group (CWI, n = 7) completed 5 minutes of active recovery (at the same intensity as the AR group) followed by 10 minutes of cold-water (12 +/- 1 degrees C) immersion. During CWI, the subjects were seated passively during the 10 minutes of cold-water immersion and the water level remained just below the pectoral muscles. Muscle strength and power were measured by isometric bilateral, 1 repetition maximum, leg press (ISOM LP) and countermovement jump (CMJ) height. Endurance performance was measured by a 3000 m running time trial. Serum testosterone, cortisol, and IGF-1 were assessed from venous blood samples. Results: ISOM LP and CMJ increased significantly over the training period, but 3000 m running time increased only marginally. Serum testosterone, cortisol, and IGF-1 remained unchanged over the intervention period. No differences between the groups were observed. Conclusions: AR and CWI were equally effective during 10 weeks of high-intensity combined strength and endurance training. Thus, physically active individuals participating in high-intensity combined strength and endurance training should use the recovery method they prefer.
  •  
29.
  • Takala, Heikki, et al. (författare)
  • Connection between Absorption Properties and Conformational Changes in Deinococcus radiodurans Phytochrome
  • 2014
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 53:45, s. 7076-7085
  • Tidskriftsartikel (refereegranskat)abstract
    • Phytochromes consist of several protein domains and a linear tetrapyrrole molecule, which interact as a red-light-sensing system. In this study, size-exclusion chromatography and light-scattering techniques are combined With UV-vis spectroscopy to investigate light-induced changes in dimeric Deinococcus radiodurans bacterial phytochrome (DrBphP and, its,subdornams. The potosensory unit (DrCBD-PHY), shows an unusually stable Pfr state with reversion, whereas the histidine, kinase (HK) domain facilitates dark reversion to the resting state. Size-exclusion chromatography reveals that all phytochrorne fragments remain as dimers in the illuminated state and dark state. Still, the elution profiles of all phytochronle fragments differ between the illuminated and dark states. The differences are observed reliably only when the whole UV-vis spectrum is characterized along the elution profile and show more Pfr-state characteristics at later elution volumes in DrBphP and DrCBD-PHY fragments. This implies that the Pliy:domain has an important role in amplifying and relaying light-induced conformational changes to the HK domain. In the illuminated state, the HK domain appears partially unfolded and prone to form oligomers. The oligoinerization of DrBphp can be diminished by converting the molecule back to the resting Pr state by using far-red light.
  •  
30.
  • Takala, H., et al. (författare)
  • Tips and turns of bacteriophytochrome photoactivation
  • 2020
  • Ingår i: Photochemical & Photobiological Sciences. - : Springer Science and Business Media LLC. - 1474-905X .- 1474-9092. ; 19:11, s. 1488-1510
  • Tidskriftsartikel (refereegranskat)abstract
    • Phytochromes are ubiquitous photosensor proteins, which control the growth, reproduction and movement in plants, fungi and bacteria. Phytochromes switch between two photophysical states depending on the light conditions. In analogy to molecular machines, light absorption induces a series of structural changes that are transduced from the bilin chromophore, through the protein, and to the output domains. Recent progress towards understanding this structural mechanism of signal transduction has been manifold. We describe this progress with a focus on bacteriophytochromes. We describe the mechanism along three structural tiers, which are the chromophore-binding pocket, the photosensory module, and the output domains. We discuss possible interconnections between the tiers and conclude by presenting future directions and open questions. We hope that this review may serve as a compendium to guide future structural and spectroscopic studies designed to understand structural signaling in phytochromes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-30 av 30
Typ av publikation
tidskriftsartikel (26)
rapport (2)
annan publikation (1)
konferensbidrag (1)
Typ av innehåll
refereegranskat (27)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Westenhoff, Sebastia ... (17)
Ihalainen, J. A. (16)
Berntsson, Oskar, 19 ... (9)
Panman, Matthijs R, ... (8)
Takala, H (7)
Ihalainen, J (7)
visa fler...
Gustavsson, Emil, 19 ... (7)
Henry, Léocadie (7)
Takala, Heikki (7)
Lehtivuori, H. (7)
Niebling, Stephan (6)
Menzel, A. (5)
Björling, Alexander, ... (5)
Hoernke, Maria (5)
Stojkovic, E. A. (5)
Schmidt, M. (4)
Hughes, Ashley J, 19 ... (4)
Henning, R. (4)
Kosheleva, I. (4)
Pandey, S (4)
Wahlgren, Weixiao Yu ... (3)
Newby, G. (3)
Tanaka, R. (2)
Svensson, Tommy, 197 ... (2)
Tanaka, T. (2)
Bengtsson, M (2)
Yuan, Y. (2)
Abrahamsson, R (2)
Vucic, N (2)
Ihalainen, Johanna K ... (2)
WULFF, M (2)
Iwata, S (2)
Kupitz, C. (2)
Fromme, P. (2)
Groenhof, G. (2)
Lakshmana, Tilak Raj ... (2)
Yutao, Sui, 1984 (2)
Popovski, P. (2)
Morozov, D. (2)
Modi, V. (2)
Moglich, A. (2)
Cellini, Andrea, 199 ... (2)
Maj, Michał (2)
Gallagher, K. D. (2)
Patel, H. (2)
St Peter, R. (2)
Duong, P. (2)
Hoydis, J. (2)
Bockelmann, C. (2)
Boccardi, F. (2)
visa färre...
Lärosäte
Göteborgs universitet (20)
Uppsala universitet (3)
Mittuniversitetet (3)
Karolinska Institutet (3)
Lunds universitet (2)
Chalmers tekniska högskola (2)
visa fler...
Umeå universitet (1)
visa färre...
Språk
Engelska (30)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (17)
Medicin och hälsovetenskap (8)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy