SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ihalainen T.) "

Search: WFRF:(Ihalainen T.)

  • Result 1-14 of 14
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Carvalho, E. de, et al. (author)
  • EU FP7 INFSO-ICT-317669 METIS, D3.1 Positioning of multi-node/multi-antenna technologies
  • 2013
  • Reports (other academic/artistic)abstract
    • This document describes the research activity in multi-node/multi-antenna technologies within METIS and positions it with respect to the state-of-the-art in the academic literature and in the standardization bodies. Based on the state-of-the-art and as well as on the METIS objectives,we set the research objectives and we group the different activities (or technology components) into research clusters with similar research objectives. The technologycomponents and the research objectives have been set to achieve an ambidextrous purpose. On one side we aim at providing the METIS system with those technological components that are a natural but non-trivial evolution of 4G. On the other side, we aim at seeking for disruptivetechnologies that could radically change 5G with respect to 4G. Moreover, we mapped the different technology components to METIS’ other activities and to the overall goals of theproject.
  •  
2.
  • Edlund, Petra, et al. (author)
  • The room temperature crystal structure of a bacterial phytochrome determined by serial femtosecond crystallography
  • 2016
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Journal article (peer-reviewed)abstract
    • Phytochromes are a family of photoreceptors that control light responses of plants, fungi and bacteria. A sequence of structural changes, which is not yet fully understood, leads to activation of an output domain. Time-resolved serial femtosecond crystallography (SFX) can potentially shine light on these conformational changes. Here we report the room temperature crystal structure of the chromophore-binding domains of the Deinococcus radiodurans phytochrome at 2.1 angstrom resolution. The structure was obtained by serial femtosecond X-ray crystallography from microcrystals at an X-ray free electron laser. We find overall good agreement compared to a crystal structure at 1.35 angstrom resolution derived from conventional crystallography at cryogenic temperatures, which we also report here. The thioether linkage between chromophore and protein is subject to positional ambiguity at the synchrotron, but is fully resolved with SFX. The study paves the way for time-resolved structural investigations of the phytochrome photocycle with time-resolved SFX.
  •  
3.
  • Herukka, S. K., et al. (author)
  • Amyloid-beta and Tau Dynamics in Human Brain Interstitial Fluid in Patients with Suspected Normal Pressure Hydrocephalus
  • 2015
  • In: Journal of Alzheimers Disease. - : IOS Press. - 1387-2877 .- 1875-8908. ; 46:1, s. 261-269
  • Journal article (peer-reviewed)abstract
    • Background: Amyloid-beta (A beta(1-42)), total tau (T-tau), and phosphorylated tau (P-tau(181)) in the cerebrospinal fluid (CSF) are the most promising biomarkers of Alzheimer's disease (AD). Still, little is known about the dynamics of these molecules in the living brain. In a transgenic mouse brain, soluble A beta decreases with increasing age and advanced A beta pathology as seen similarly in CSF. Objective: To assess the relationship between AD-related pathological changes in human brain tissue, ventricular and lumbar CSF, and brain interstitial fluid (ISF). Methods: Altogether 11 patients with suspected idiopathic normal pressure hydrocephalus underwent frontal cortical brain biopsy, 24-h intraventricular pressure monitoring, and a microdialysis procedure. AD-related biomarkers were analyzed from brain tissue, CSF, and ISF. Results: ISF T-tau levels decreased strongly within the first 12 h, then plateauing until the end of the experiment. A beta(1-42) and P-tau(181) remained stable during the experiment (n = 3). T-tau and P-tau were higher in the ISF than in ventricular or lumbar CSF, while A beta(1-42) levels were within similar range in both CSF and ISF samples. ISF P-tau correlated with the ventricular CSF T-tau (r = 0.70, p = 0.017) and P-tau(181) (r = 0.64, p = 0.034). Five patients with amyloid pathology in the brain biopsy tended to reveal lower ISF A beta(1-42) levels than those six without amyloid pathology. Conclusions: This is the first study to report ISF A beta and tau levels in the human brain without significant brain injury. The set-up used enables sampling from the brain ISF for at least 24 h without causing adverse effects due to the microdialysis procedure to follow the dynamics of the key molecules in AD pathogenesis in the living brain at various stages of the disease.
  •  
4.
  • Fantini, R, et al. (author)
  • EU FP7 INFSO-ICT-317669 METIS, D3.2 First performance results for multi-node/multi-antenna transmission technologies
  • 2014
  • Reports (other academic/artistic)abstract
    • This deliverable describes the current results of the multi-node/multi-antenna technologies investigated within METIS and analyses the interactions within and outside Work Package 3. Furthermore, it identifies the most promising technologies based on the current state of obtained results. This document provides a brief overview of the results in its first part. The second part, namely the Appendix, further details the results, describes the simulation alignment efforts conducted in the Work Package and the interaction of the Test Cases. The results described here show that the investigations conducted in Work Package 3 are maturing resulting in valuable innovative solutions for future 5G systems.
  •  
5.
  • Haapala, E. A., et al. (author)
  • Associations of physical activity, sedentary time, and diet quality with biomarkers of inflammation in children
  • 2022
  • In: European Journal of Sport Science. - : Informa UK Limited. - 1746-1391 .- 1536-7290. ; 22:6, s. 906-915
  • Journal article (peer-reviewed)abstract
    • We investigated the associations of physical activity (PA), sedentary time (ST), and diet quality with biomarkers of inflammation in 390 children (192 girls, 198 boys) aged 6–8 years. PA energy expenditure (PAEE), light PA, moderate PA (MPA), vigorous PA (VPA), moderate-to-vigorous PA (MVPA), and ST were assessed by combined movement and heart rate sensor. Finnish Children Healthy Eating Index was calculated using data from 4 d food records. Body fat percentage (BF%) was measured by dual-energy X-ray absorptiometry. High-sensitivity C-reactive protein (Hs-CRP), leptin, interleukin-6 (IL-6), adiponectin, tumour necrosis factor-α, and glycoprotein acetyls were measured from fasting blood samples. PAEE, MPA, VPA, and MVPA were inversely associated with hs-CRP (β=−191 to −139, 95% CI=−0.294 to −0.024), leptin (β=−0.409 to −0.301, 95% CI=−0.499 to −0.107), IL-6 (β=−0.136 to −0.104, 95% CI=−0.240 to −0.001) and PAEE, MPA, and MVPA were inversely associated with glycoprotein acetyls (β=−0.117 to −0.103, 95% CI=−0.213 to −0.001). ST was directly associated with hs-CRP (β=0.170, 95% CI=0.070–0.269), leptin (β=0.355, 95% CI=0.265–0.445), and IL-6 (β=0.105, 95% CI=0.005–0.205). VPA was inversely associated with hs-CRP, leptin, and IL-6 in children with higher BF% (β=−0.344 to −0.181, 95% CI=−0.477 to −0.033) but not among children with lower BF% (β=−0.007–0.033, 95% CI=−0.183–0.184). In conclusion, PA was inversely and ST directly associated with circulating levels of biomarkers of inflammation among children. Furthermore, we observed that PA was inversely associated with these biomarkers for inflammation in children with a higher BF%. Highlights Systemic inflammation, as indicated by increased circulating concentrations of biomarkers for inflammation, may be important in causal pathways leading to insulin resistance, sub-clinical atherosclerosis, and eventually clinical manifestations of cardiovascular diseases. Higher levels of physical activity and lower levels of sedentary time were associated with more favourable inflammatory profile. Body fat percentage modified these associations and especially vigorous intensity physical activity was inversely associated with biomarkers of inflammation on children with higher body fat percentage but not in children with lower body fat percentage. 
  •  
6.
  • Herukka, Sanna-Kaisa, et al. (author)
  • Amyloid-beta and Tau Dynamics in Human Brain Interstitial Fluid in Patients with Suspected Normal Pressure Hydrocephalus
  • 2015
  • In: Journal of Alzheimer's Disease. - 1387-2877 .- 1875-8908. ; 46:1, s. 261-269
  • Journal article (peer-reviewed)abstract
    • Background: Amyloid-beta (A beta(1-42)), total tau (T-tau), and phosphorylated tau (P-tau(181)) in the cerebrospinal fluid (CSF) are the most promising biomarkers of Alzheimer's disease (AD). Still, little is known about the dynamics of these molecules in the living brain. In a transgenic mouse brain, soluble A beta decreases with increasing age and advanced A beta pathology as seen similarly in CSF. Objective: To assess the relationship between AD-related pathological changes in human brain tissue, ventricular and lumbar CSF, and brain interstitial fluid (ISF). Methods: Altogether 11 patients with suspected idiopathic normal pressure hydrocephalus underwent frontal cortical brain biopsy, 24-h intraventricular pressure monitoring, and a microdialysis procedure. AD-related biomarkers were analyzed from brain tissue, CSF, and ISF. Results: ISF T-tau levels decreased strongly within the first 12 h, then plateauing until the end of the experiment. A beta(1-42) and P-tau(181) remained stable during the experiment (n = 3). T-tau and P-tau were higher in the ISF than in ventricular or lumbar CSF, while A beta(1-42) levels were within similar range in both CSF and ISF samples. ISF P-tau correlated with the ventricular CSF T-tau (r = 0.70, p = 0.017) and P-tau(181) (r = 0.64, p = 0.034). Five patients with amyloid pathology in the brain biopsy tended to reveal lower ISF A beta(1-42) levels than those six without amyloid pathology. Conclusions: This is the first study to report ISF A beta and tau levels in the human brain without significant brain injury. The set-up used enables sampling from the brain ISF for at least 24 h without causing adverse effects due to the microdialysis procedure to follow the dynamics of the key molecules in AD pathogenesis in the living brain at various stages of the disease.
  •  
7.
  • Woitowich, N. C., et al. (author)
  • Structural basis for light control of cell development revealed by crystal structures of a myxobacterial phytochrome
  • 2018
  • In: Iucrj. - : International Union of Crystallography (IUCr). - 2052-2525. ; 5:Part 5, s. 619-634
  • Journal article (peer-reviewed)abstract
    • Phytochromes are red-light photoreceptors that were first characterized in plants, with homologs in photosynthetic and non-photosynthetic bacteria known as bacteriophytochromes (BphPs). Upon absorption of light, BphPs interconvert between two states denoted Pr and Pfr with distinct absorption spectra in the red and far-red. They have recently been engineered as enzymatic photoswitches for fluorescent-marker applications in non-invasive tissue imaging of mammals. This article presents cryo- and room-temperature crystal structures of the unusual phytochrome from the non-photosynthetic myxobacterium Stigmatella aurantiaca (SaBphP1) and reveals its role in the fruitingbody formation of this photomorphogenic bacterium. SaBphP1 lacks a conserved histidine (His) in the chromophore-binding domain that stabilizes the Pr state in the classical BphPs. Instead it contains a threonine (Thr), a feature that is restricted to several myxobacterial phytochromes and is not evolutionarily understood. SaBphP1 structures of the chromophore binding domain (CBD) and the complete photosensory core module (PCM) in wild-type and Thr-to-His mutant forms reveal details of the molecular mechanism of the Pr/Pfr transition associated with the physiological response of this myxobacterium to red light. Specifically, key structural differences in the CBD and PCM between the wild-type and the Thr-to-His mutant involve essential chromophore contacts with proximal amino acids, and point to how the photosignal is transduced through the rest of the protein, impacting the essential enzymatic activity in the photomorphogenic response of this myxobacterium.
  •  
8.
  • Björling, Alexander, 1983, et al. (author)
  • Ubiquitous Structural Signaling in Bacterial Phytochromes
  • 2015
  • In: Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 6:17, s. 3379-3383
  • Journal article (peer-reviewed)abstract
    • The phytochrome family of light-switchable proteins has long been studied by biochemical, spectroscopic and crystallographic means, while a direct probe for global conformational signal propagation has been lacking. Using solution X-ray scattering, we find that the photosensory cores of several bacterial phytochromes undergo similar large-scale structural changes upon red-light excitation. The data establish that phytochromes with ordinary and inverted photocycles share a structural signaling mechanism and that a particular conserved histidine, previously proposed to be involved in signal propagation, in fact tunes photoresponse.
  •  
9.
  • Claesson, Elin, 1989, et al. (author)
  • The primary structural photoresponse of phytochrome proteins captured by a femtosecond X-ray laser
  • 2020
  • In: eLife. - 2050-084X. ; 9
  • Journal article (peer-reviewed)abstract
    • Phytochrome proteins control the growth, reproduction, and photosynthesis of plants, fungi, and bacteria. Light is detected by a bilin cofactor, but it remains elusive how this leads to activation of the protein through structural changes. We present serial femtosecond X-ray crystallographic data of the chromophore-binding domains of a bacterial phytochrome at delay times of 1 ps and 10 ps after photoexcitation. The data reveal a twist of the D-ring, which leads to partial detachment of the chromophore from the protein. Unexpectedly, the conserved so-called pyrrole water is photodissociated from the chromophore, concomitant with movement of the A-ring and a key signaling aspartate. The changes are wired together by ultrafast backbone and water movements around the chromophore, channeling them into signal transduction towards the output domains. We suggest that the observed collective changes are important for the phytochrome photoresponse, explaining the earliest steps of how plants, fungi and bacteria sense red light.
  •  
10.
  • Ihalainen, J. A., et al. (author)
  • Chromophore-Protein Interplay during the Phytochrome Photocycle Revealed by Step-Scan FTIR Spectroscopy
  • 2018
  • In: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 140:39, s. 12396-12404
  • Journal article (peer-reviewed)abstract
    • Phytochrome proteins regulate many photo-responses of plants and microorganisms. Light absorption causes isomerization of the biliverdin chromophore, which triggers a series of structural changes to activate the signaling domains of the protein. However, the structural changes are elusive, and therefore the molecular mechanism of signal transduction remains poorly understood. Here, we apply twocolor step-scan infrared spectroscopy to the bacteriophytochrome from Deinococcus radiodurans. We show by recordings in H2O and D2O that the hydrogen bonds to the biliverdin D-ring carbonyl become disordered in the first intermediate (Lumi-R) forming a dynamic microenvironment, then completely detach in the second intermediate (Meta-R), and finally reform in the signaling state (Pfr). The spectra reveal via isotope labeling that the refolding of the conserved "PHY-tongue" region occurs with the last transition between Meta-R and Pfr. Additional changes in the protein backbone are detected already within microseconds in Lumi-R Aided by molecular dynamics simulations, we find that a strictly conserved salt bridge between an arginine of the PHY tongue and an aspartate of the chromophore binding domains is broken in Lumi-R and the arginine is recruited to the D-ring C=O. This rationalizes how isomerization of the chromophore is linked to the global structural rearrangement in the sensory receptor. Our findings advance the structural understanding of phytochrome photoactivation.
  •  
11.
  •  
12.
  • Mattola, S., et al. (author)
  • Concepts to Reveal Parvovirus-Nucleus Interactions
  • 2021
  • In: Viruses-Basel. - : MDPI AG. - 1999-4915. ; 13:7
  • Journal article (peer-reviewed)abstract
    • Parvoviruses are small single-stranded (ss) DNA viruses, which replicate in the nucleoplasm and affect both the structure and function of the nucleus. The nuclear stage of the parvovirus life cycle starts at the nuclear entry of incoming capsids and culminates in the successful passage of progeny capsids out of the nucleus. In this review, we will present past, current, and future microscopy and biochemical techniques and demonstrate their potential in revealing the dynamics and molecular interactions in the intranuclear processes of parvovirus infection. In particular, a number of advanced techniques will be presented for the detection of infection-induced changes, such as DNA modification and damage, as well as protein-chromatin interactions.
  •  
13.
  • Multamaki, E., et al. (author)
  • Comparative analysis of two paradigm bacteriophytochromes reveals opposite functionalities in two-component signaling
  • 2021
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Journal article (peer-reviewed)abstract
    • Bacterial phytochrome photoreceptors usually belong to two-component signaling systems which transmit environmental stimuli to a response regulator through a histidine kinase domain. Phytochromes switch between red light-absorbing and far-red light-absorbing states. Despite exhibiting extensive structural responses during this transition, the model bacteriophytochrome from Deinococcus radiodurans (DrBphP) lacks detectable kinase activity. Here, we resolve this long-standing conundrum by comparatively analyzing the interactions and output activities of DrBphP and a bacteriophytochrome from Agrobacterium fabrum (Agp1). Whereas Agp1 acts as a conventional histidine kinase, we identify DrBphP as a light-sensitive phosphatase. While Agp1 binds its cognate response regulator only transiently, DrBphP does so strongly, which is rationalized at the structural level. Our data pinpoint two key residues affecting the balance between kinase and phosphatase activities, which immediately bears on photoreception and two-component signaling. The opposing output activities in two highly similar bacteriophytochromes suggest the use of light-controllable histidine kinases and phosphatases for optogenetics. The bacteriophytochrome DrBphP from Deinococcus radiodurans shows high sequence homology to the histidine kinase Agp1 from Agrobacterium fabrum but lacks kinase activity. Here, the authors structurally and biochemically analyse DrBphP and Agp1, showing that DrBphP is a light-activatable phosphatase.
  •  
14.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-14 of 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view