SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ikizler T. A.) "

Sökning: WFRF:(Ikizler T. A.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Robinson-Cohen, C., et al. (författare)
  • Genetic Variants Associated with Circulating Fibroblast Growth Factor 23
  • 2018
  • Ingår i: Journal of the American Society of Nephrology. - : Ovid Technologies (Wolters Kluwer Health). - 1046-6673 .- 1533-3450. ; 29:10, s. 2583-2592
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Fibroblast growth factor 23 (FGF23), a bone-derived hormone that regulates phosphorus and vitamin D metabolism, contributes to the pathogenesis of mineral and bone disorders in CKD and is an emerging cardiovascular risk factor. Central elements of FGF23 regulation remain incompletely understood; genetic variation may help explain interindividual differences. Methods We performed a meta-analysis of genome-wide association studies of circulating FGF23 concentrations among 16,624 participants of European ancestry from seven cohort studies, excluding participants with eGFR<30 ml/min per 1.73 m(2) to focus on FGF23 under normal conditions. We evaluated the association of single-nucleotide polymorphisms (SNPs) with natural log-transformed FGF23 concentration, adjusted for age, sex, study site, and principal components of ancestry. A second model additionally adjusted for BMI and eGFR. Results We discovered 154 SNPs from five independent regions associated with FGF23 concentration. The SNP with the strongest association, rs17216707 (P=3.0x10(-24)), lies upstream of CYP24A1, which encodes the primary catabolic enzyme for 1,25-dihydroxyvitamin D and 25-hydroxyvitamin D. Each additional copy of the T allele at this locus is associated with 5% higher FGF23 concentration. Another locus strongly associated with variations in FGF23 concentration is rs11741640, within RGS14 and upstream of SLC34A1 (a gene involved in renal phosphate transport). Additional adjustment for BMI and eGFR did not materially alter the magnitude of these associations. Another top locus (within ABO, the ABO blood group transferase gene) was no longer statistically significant at the genome-wide level. Conclusions Common genetic variants located near genes involved in vitamin D metabolism and renal phosphate transport are associated with differences in circulating FGF23 concentrations.
  •  
2.
  • Caglar, K, et al. (författare)
  • Serum fetuin-a concentration and endothelial dysfunction in chronic kidney disease
  • 2008
  • Ingår i: Nephron. Clinical practice. - : S. Karger AG. - 1660-2110. ; 108:3, s. C233-C240
  • Tidskriftsartikel (refereegranskat)abstract
    • <i>Background:</i> Defective endothelial function, an initial step in the development of atherosclerotic plaque, is prevalent in moderate to advanced chronic kidney disease (CKD). In this study, the investigators hypothesized that fetuin-A, a calcification inhibitor, is a novel risk factor for the development of endothelial dysfunction in patients. <i>Methods:</i> 198 nondiabetic patients with a mean age of 44.0 ± 12.4 years and with different stages of CKD were studied. In addition to a detailed metabolic panel, flow-mediated dilatation assessed by high-resolution brachial ultrasonography was performed to determine endothelial dysfunction. Carotid intima-media thickness was also estimated by ultrasonography. Serum fetuin-A concentrations were determined by using a human ELISA method. <i>Results:</i> Endothelial dysfunction was observed in all stages (1–5) of CKD and worsened in parallel to the reduction in estimated glomerular filtration rate. Serum fetuin-A concentrations were also found to be decreased in all but stage 1 CKD. On multiple regression analysis, endothelial dysfunction was independently associated with fetuin-A (β = 0.745, p < 0.001) and intact parathyroid hormone concentrations (β = –0.216, p < 0.001). <i>Conclusion:</i> These data in a selected cohort of CKD patients indicate that fetuin-A may be one of the contributing factors for the development of endothelial dysfunction in CKD patients.
  •  
3.
  •  
4.
  • Robinson-Cohen, Cassianne, et al. (författare)
  • Genetic Variants Associated with Circulating Fibroblast Growth Factor 23
  • 2018
  • Ingår i: Journal of the American Society of Nephrology. - : AMER SOC NEPHROLOGY. - 1046-6673 .- 1533-3450. ; 29:10, s. 2583-2592
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Fibroblast growth factor 23 (FGF23), a bone-derived hormone that regulates phosphorus and vitamin D metabolism, contributes to the pathogenesis of mineral and bone disorders in CKD and is an emerging cardiovascular risk factor. Central elements of FGF23 regulation remain incompletely understood; genetic variation may help explain interindividual differences.Methods: We performed a meta-analysis of genome-wide association studies of circulating FGF23 concentrations among 16,624 participants of European ancestry from seven cohort studies, excluding participants with eGFR<30 ml/min per 1.73 m(2) to focus on FGF23 under normal conditions. We evaluated the association of single-nucleotide polymorphisms (SNPs) with natural log-transformed FGF23 concentration, adjusted for age, sex, study site, and principal components of ancestry. A second model additionally adjusted for BMI and eGFR.Results: We discovered 154 SNPs from five independent regions associated with FGF23 concentration. The SNP with the strongest association, rs17216707 (P=3.0x10(-24)), lies upstream of CYP24A1, which encodes the primary catabolic enzyme for 1,25-dihydroxyvitamin D and 25-hydroxyvitamin D. Each additional copy of the T allele at this locus is associated with 5% higher FGF23 concentration. Another locus strongly associated with variations in FGF23 concentration is rs11741640, within RGS14 and upstream of SLC34A1 (a gene involved in renal phosphate transport). Additional adjustment for BMI and eGFR did not materially alter the magnitude of these associations. Another top locus (within ABO, the ABO blood group transferase gene) was no longer statistically significant at the genome-wide level.Conclusions: Common genetic variants located near genes involved in vitamin D metabolism and renal phosphate transport are associated with differences in circulating FGF23 concentrations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy