SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ikonomou Laertis) "

Sökning: WFRF:(Ikonomou Laertis)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hoffman, Evan T., et al. (författare)
  • Human alveolar hydrogels promote morphological and transcriptional differentiation in iPSC-derived alveolar type 2 epithelial cells
  • 2023
  • Ingår i: Scientific Reports. - 2045-2322. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Alveolar type 2 epithelial cells (AT2s) derived from human induced pluripotent stem cells (iAT2s) have rapidly contributed to our understanding of AT2 function and disease. However, while iAT2s are primarily cultured in three-dimensional (3D) Matrigel, a matrix derived from cancerous mouse tissue, it is unclear how a physiologically relevant matrix will impact iAT2s phenotype. As extracellular matrix (ECM) is recognized as a vital component in directing cellular function and differentiation, we sought to derive hydrogels from decellularized human lung alveolar-enriched ECM (aECM) to provide an ex vivo model to characterize the role of physiologically relevant ECM on iAT2 phenotype. We demonstrate aECM hydrogels retain critical in situ ECM components, including structural and basement membrane proteins. While aECM hydrogels facilitate iAT2 proliferation and alveolosphere formation, a subset of iAT2s rapidly change morphology to thin and elongated ring-like cells. This morphological change correlates with upregulation of recently described iAT2-derived transitional cell state genetic markers. As such, we demonstrate a potentially underappreciated role of physiologically relevant aECM in iAT2 differentiation.
  •  
2.
  • Ikonomou, Laertis, et al. (författare)
  • Stem cells, cell therapies, and bioengineering in lung biology and disease 2021
  • 2022
  • Ingår i: American Journal of Physiology - Lung Cellular and Molecular Physiology. - : American Physiological Society. - 1040-0605 .- 1522-1504. ; 323:3, s. 341-354
  • Forskningsöversikt (refereegranskat)abstract
    • The 9th biennial conference titled “Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases” was hosted virtually, due to the ongoing COVID-19 pandemic, in collaboration with the University of Vermont Larner College of Medicine, the National Heart, Lung, and Blood Institute, the Alpha-1 Foundation, the Cystic Fibrosis Foundation, and the International Society for Cell & Gene Therapy. The event was held from July 12th through 15th, 2021 with a pre-conference workshop held on July 9th. As in previous years, the objectives remained to review and discuss the status of active research areas involving stem cells (SCs), cellular therapeutics, and bioengineering as they relate to the human lung. Topics included 1) technological advancements in the in situ analysis of lung tissues, 2) new insights into stem cell signaling and plasticity in lung remodeling and regeneration, 3) the impact of extracellular matrix in stem cell regulation and airway engineering in lung regeneration, 4) differentiating and delivering stem cell therapeutics to the lung, 5) regeneration in response to viral infection, and 6) ethical development of cell-based treatments for lung diseases. This selection of topics represents some of the most dynamic and current research areas in lung biology.
  •  
3.
  •  
4.
  • Ikonomou, Laertis, et al. (författare)
  • Translating Basic Research into Safe and Effective Cell-based Treatments for Respiratory Diseases
  • 2019
  • Ingår i: Annals of the American Thoracic Society. - 2325-6621. ; 16:6, s. 657-668
  • Forskningsöversikt (refereegranskat)abstract
    • Respiratory diseases, such as chronic obstructive pulmonary disease and pulmonary fibrosis, result in severely impaired quality of life and impose significant burdens on healthcare systems worldwide. Current disease management involves pharmacologic interventions, oxygen administration, reduction of infections, and lung transplantation in advanced disease stages. An increasing understanding of mechanisms of respiratory epithelial and pulmonary vascular endothelial maintenance and repair and the underlying stem/progenitor cell populations, including but not limited to airway basal cells and type II alveolar epithelial cells, has opened the possibility of cell replacement-based regenerative approaches for treatment of lung diseases. Further potential for personalized therapies, including in vitro drug screening, has been underscored by the recent derivation of various lung epithelial, endothelial, and immune cell types from human induced pluripotent stem cells. In parallel, immunomodulatory treatments using allogeneic or autologous mesenchymal stromal cells have shown a good safety profile in clinical investigations for acute inflammatory conditions such as acute respiratory distress syndrome and septic shock. As yet, no cell-based therapy has been shown to be both safe and effective for any lung disease. Despite the investigational status of cell-based interventions for lung diseases, businesses that market unproven, unlicensed and potentially harmful cell-based interventions for respiratory diseases have proliferated in the U.S. and worldwide. The current status of various cell-based regenerative approaches for lung disease as well as the effect of the regulatory environment on clinical translation of such approaches are presented and critically discussed in this review.
  •  
5.
  •  
6.
  • Ryan, Amy L, et al. (författare)
  • Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases 2017 : An Official American Thoracic Society Workshop Report
  • 2019. - 4
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • The University of Vermont Larner College of Medicine, in collaboration with the National Heart, Lung, and Blood Institute (NHLBI), the Alpha-1 Foundation, the American Thoracic Society, the Cystic Fibrosis Foundation, the European Respiratory Society, the International Society for Cell & Gene Therapy, and the Pulmonary Fibrosis Foundation, convened a workshop titled "Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases" from July 24 through 27, 2017, at the University of Vermont, Burlington, Vermont. The conference objectives were to review and discuss current understanding of the following topics: 1) stem and progenitor cell biology and the role that they play in endogenous repair or as cell therapies after lung injury, 2) the emerging role of extracellular vesicles as potential therapies, 3) ex vivo bioengineering of lung and airway tissue, and 4) progress in induced pluripotent stem cell protocols for deriving lung cell types and applications in disease modeling. All of these topics are research areas in which significant and exciting progress has been made over the past few years. In addition, issues surrounding the ethics and regulation of cell therapies worldwide were discussed, with a special emphasis on combating the growing problem of unproven cell interventions being administered to patients with lung diseases. Finally, future research directions were discussed, and opportunities for both basic and translational research were identified.
  •  
7.
  •  
8.
  • Wagner, Darcy E, et al. (författare)
  • Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Disease 2019
  • 2020
  • Ingår i: ERJ Open Research. - : European Respiratory Society (ERS). - 2312-0541. ; 6:4
  • Forskningsöversikt (refereegranskat)abstract
    • A workshop entitled "Stem Cells, Cell Therapies and Bioengineering in Lung Biology and Diseases" was hosted by the University of Vermont Larner College of Medicine in collaboration with the National Heart, Lung and Blood Institute, the Alpha-1 Foundation, the Cystic Fibrosis Foundation, the International Society for Cell and Gene Therapy and the Pulmonary Fibrosis Foundation. The event was held from July 15 to 18, 2019 at the University of Vermont, Burlington, Vermont. The objectives of the conference were to review and discuss the current status of the following active areas of research: 1) technological advancements in the analysis and visualisation of lung stem and progenitor cells; 2) evaluation of lung stem and progenitor cells in the context of their interactions with the niche; 3) progress toward the application and delivery of stem and progenitor cells for the treatment of lung diseases such as cystic fibrosis; 4) progress in induced pluripotent stem cell models and application for disease modelling; and 5) the emerging roles of cell therapy and extracellular vesicles in immunomodulation of the lung. This selection of topics represents some of the most dynamic research areas in which incredible progress continues to be made. The workshop also included active discussion on the regulation and commercialisation of regenerative medicine products and concluded with an open discussion to set priorities and recommendations for future research directions in basic and translation lung biology.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy