SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ims Rolf A.) "

Sökning: WFRF:(Ims Rolf A.)

  • Resultat 1-21 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ehrich, Dorothee, et al. (författare)
  • Documenting lemming population change in the Arctic : Can we detect trends?
  • 2020
  • Ingår i: Ambio. - : Springer Science and Business Media LLC. - 0044-7447 .- 1654-7209. ; 49:3, s. 786-800
  • Tidskriftsartikel (refereegranskat)abstract
    • Lemmings are a key component of tundra food webs and changes in their dynamics can affect the whole ecosystem. We present a comprehensive overview of lemming monitoring and research activities, and assess recent trends in lemming abundance across the circumpolar Arctic. Since 2000, lemmings have been monitored at 49 sites of which 38 are still active. The sites were not evenly distributed with notably Russia and high Arctic Canada underrepresented. Abundance was monitored at all sites, but methods and levels of precision varied greatly. Other important attributes such as health, genetic diversity and potential drivers of population change, were often not monitored. There was no evidence that lemming populations were decreasing in general, although a negative trend was detected for low arctic populations sympatric with voles. To keep the pace of arctic change, we recommend maintaining long-term programmes while harmonizing methods, improving spatial coverage and integrating an ecosystem perspective.
  •  
2.
  • Elmhagen, Bodil, et al. (författare)
  • Homage to Hersteinsson and Macdonald : climate warming and resource subsidies cause red fox range expansion and Arctic fox decline
  • 2017
  • Ingår i: Polar Research. - : Norwegian Polar Institute. - 0800-0395 .- 1751-8369. ; 36:suppl. 1
  • Forskningsöversikt (refereegranskat)abstract
    • Climate change can have a marked effect on the distribution and abundance of some species, as well as their interspecific interactions. In 1992, before ecological effects of anthropogenic climate change had developed into a topical research field, Hersteinsson and Macdonald published a seminal paper hypothesizing that the northern distribution limit of the red fox (Vulpes vulpes) is determined by food availability and ultimately climate, while the southern distribution limit of the Arctic fox (Vulpes lagopus) is determined by interspecific competition with the larger red fox. This hypothesis has inspired extensive research in several parts of the circumpolar distribution range of the Arctic fox. Over the past 25 years, it was shown that red foxes can exclude Arctic foxes from dens, space and food resources, and that red foxes kill and sometimes consume Arctic foxes. When the red fox increases to ecologically effective densities, it can cause Arctic fox decline, extirpation and range contraction, while conservation actions involving red fox culling can lead to Arctic fox recovery. Red fox advance in productive tundra, concurrent with Arctic fox retreat from this habitat, support the original hypothesis that climate warming will alter the geographical ranges of the species. However, recent studies show that anthropogenic subsidies also drive red fox advance, allowing red fox establishment north of its climate-imposed distribution limit. We conclude that synergies between anthropogenic subsidies and climate warming will speed up Arctic ecosystem change, allowing mobile species to establish and thrive in human-provided refugia, with potential spill-over effects in surrounding ecosystems.
  •  
3.
  • Post, Eric, et al. (författare)
  • Ecological Dynamics Across the Arctic Associated with Recent Climate Change
  • 2009
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 325:5946, s. 1355-1358
  • Forskningsöversikt (refereegranskat)abstract
    • At the close of the Fourth International Polar Year, we take stock of the ecological consequences of recent climate change in the Arctic, focusing on effects at population, community, and ecosystem scales. Despite the buffering effect of landscape heterogeneity, Arctic ecosystems and the trophic relationships that structure them have been severely perturbed. These rapid changes may be a bellwether of changes to come at lower latitudes and have the potential to affect ecosystem services related to natural resources, food production, climate regulation, and cultural integrity. We highlight areas of ecological research that deserve priority as the Arctic continues to warm.
  •  
4.
  • Henden, J-A, et al. (författare)
  • Phase-dependent effect of conservation efforts in cyclically fluctuating populations of Arctic fox (Vulpes lagopus).
  • 2009
  • Ingår i: Biological Conservation. - : Elsevier BV. - 0006-3207 .- 1873-2917. ; 142, s. 2586-2592
  • Tidskriftsartikel (refereegranskat)abstract
    • Predator populations with demographic cycles driven by multi-annual cycles of their key prey resourcecan be expected to be ‘‘cyclic phase sensitive” to management actions. We explored this by means ofmodelling in the case of the highly endangered Fennoscandian arctic fox population which is driven by4-year population cycles in small rodent prey. By using a model in which the management actionimproved arctic fox vital rate through increased resource availability, we show that arctic fox populationgrowth was most improved when management action was applied in the increase and decrease phase ofthe cycle. Except in the low phase of the cycle, the growth rate was more affected when the managementaction worked through improved reproduction than improved survival. There was a synergistic effect tobe gained by performing management action during multiple phases during a demographic cycle. Thuswe recommend that arctic fox conservation programs ought to be continuous in time, but with the highestintensities of management action in the phases of the cycle in which the target population is mostprone to respond.
  •  
5.
  • Jansson, Roland, et al. (författare)
  • Future changes in the supply of goods and services from natural ecosystems : prospects for the European north
  • 2015
  • Ingår i: Ecology and Society. - : Resilience Alliance. - 1708-3087. ; 20:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Humans depend on services provided by ecosystems, and how services are affected by climate change is increasingly studied. Few studies, however, address changes likely to affect services from seminatural ecosystems. We analyzed ecosystem goods and services in natural and seminatural systems, specifically how they are expected to change as a result of projected climate change during the 21st century. We selected terrestrial and freshwater systems in northernmost Europe, where climate is anticipated to change more than the global average, and identified likely changes in ecosystem services and their societal consequences. We did this by assembling experts from ecology, social science, and cultural geography in workshops, and we also performed a literature review. Results show that most ecosystem services are affected by multiple factors, often acting in opposite directions. Out of 14 services considered, 8 are expected to increase or remain relatively unchanged in supply, and 6 are expected to decrease. Although we do not predict collapse or disappearance of any of the investigated services, the effects of climate change in conjunction with potential economical and societal changes may exceed the adaptive capacity of societies. This may result in societal reorganization and changes in ways that ecosystems are used. Significant uncertainties and knowledge gaps in the forecast make specific conclusions about societal responses to safeguard human well-being questionable. Adapting to changes in ecosystem services will therefore require consideration of uncertainties and complexities in both social and ecological responses. The scenarios presented here provide a framework for future studies exploring such issues.
  •  
6.
  • Angerbjörn, Anders, et al. (författare)
  • Carnivore conservation in practice : replicatedmanagement actions on a large spatial scale
  • 2013
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 50:1, s. 59-67
  • Tidskriftsartikel (refereegranskat)abstract
    • More than a quarter of the world’s carnivores are threatened, often due to multiple andcomplex causes. Considerable research efforts are devoted to resolving the mechanisms behindthese threats in order to provide a basis for relevant conservation actions. However, evenwhen the underlying mechanisms are known, specific actions aimed at direct support for carnivoresare difficult to implement and evaluate at efficient spatial and temporal scales.2. We report on a 30-year inventory of the critically endangered Fennoscandian arctic foxVulpes lagopus L., including yearly surveys of 600 fox dens covering 21 000 km2. These surveysshowed that the population was close to extinction in 2000, with 40–60 adult animalsleft. However, the population subsequently showed a fourfold increase in size.3. During this time period, conservation actions through supplementary feeding and predatorremoval were implemented in several regions across Scandinavia, encompassing 79% of thearea. To evaluate these actions, we examined the effect of supplemental winter feeding andred fox control applied at different intensities in 10 regions. A path analysis indicated that47% of the explained variation in population productivity could be attributed to lemmingabundance, whereas winter feeding had a 29% effect and red fox control a 20% effect.4. This confirms that arctic foxes are highly dependent on lemming population fluctuationsbut also shows that red foxes severely impact the viability of arctic foxes. This study also highlightsthe importance of implementing conservation actions on extensive spatial and temporalscales, with geographically dispersed actions to scientifically evaluate the effects. We note thatpopulation recovery was only seen in regions with a high intensity of management actions.5. Synthesis and applications. The present study demonstrates that carnivore populationdeclines may be reversed through extensive actions that target specific threats. Fennoscandianarctic fox is still endangered, due to low population connectivity and expected climate impactson the distribution and dynamics of lemmings and red foxes. Climate warming is expected tocontribute to both more irregular lemming dynamics and red fox appearance in tundra areas;however, the effects of climate change can be mitigated through intensive managementactions such as supplemental feeding and red fox control.
  •  
7.
  • Berteaux, Dominique, et al. (författare)
  • Arctic and red foxes
  • 2011
  • Ingår i: Arctic WOLVES. - Quebec City, Quebec, Canada : Centre d’études nordiques, Université Laval. ; , s. 76-87
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)
  •  
8.
  • Brunhoff, Cecilia, et al. (författare)
  • Glacial survival or late glacial colonization? Phylogeography of the root vole (Microtus oeconomus) in north-west Norway
  • 2006
  • Ingår i: Journal of Biogeography. - : Wiley. - 1365-2699 .- 0305-0270. ; 33:12, s. 2136-2144
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim It has been proposed that the root vole subspecies, Microtus oeconomus finmarchicus, survived the last glacial period on islands on the north-west coast of Norway. The Norwegian island of Andoya may have constituted the only site with permanent ice-free conditions. Geological surveys and fossil finds from Andoya demonstrate that survival throughout the last glacial maximum was probably possible for some plants and animals. In this study we aim to infer the recent evolutionary history of Norwegian root vole populations and to evaluate the glacial survival hypothesis. Methods DNA sequence variation in the mitochondrial cytochrome b gene was studied in 46 root voles from 19 localities. Location Northern Fennoscandia and north-west Russia with a focus on islands on the north-west coast of Norway. Results The phylogeographical analyses revealed two North European phylogroups labelled 'Andoya' and 'Fennoscandia'. The Andoya phylogroup contained root voles from the Norwegian islands of Andoya, Ringvassoya and Reinoya and two localities in north-west Russia. The Fennoscandian phylogroup encompassed root voles from the three Norwegian islands of Kvaloya, Hakoya and Arnoya and the remaining specimens from Norway, northern Sweden and Finland. Nucleotide diversity within the Andoya and Fennoscandian phylogroups was similar, ranging from 0.5% to 0.7%. Main conclusions Both our genetic data and previously published morphological data are consistent with in situ glacial survival of root voles on Andoya during the last glacial maximum. However, the level of genetic diversity observed in the extant island populations, the past periods of severe climatic conditions on Andoya and the ecology of the root vole are somewhat difficult to reconcile with this model. A biogeographical scenario involving late glacial recolonization along the northern coasts of Russia and Norway therefore represents a viable alternative. Our results demonstrate that complex recolonization and extinction histories can generate intricate phylogeographical patterns and relatively high levels of genetic variation in northern populations.
  •  
9.
  • Callaghan, Terry V., et al. (författare)
  • Biodiversity, distributions and adaptations of arctic species in the context of environmental change
  • 2004
  • Ingår i: Ambio: a Journal of Human Environment. - : Royal Swedish Academy of Sciences. - 0044-7447. ; 33:7, s. 404-417
  • Forskningsöversikt (refereegranskat)abstract
    • The individual of a species is the basic unit which responds to climate and UV-B changes, and it responds over a wide range of time scales. The diversity of animal, plant and microbial species appears to be low in the Arctic, and decreases from the boreal forests to the polar deserts of the extreme North but primitive species are particularly abundant. This latitudinal decline is associated with an increase in super-dominant species that occupy a wide range of habitats. Climate warming is expected to reduce the abundance and restrict the ranges of such species and to affect species at their northern range boundaries more than in the South: some Arctic animal and plant specialists could face extinction. Species most likely to expand into tundra are boreal species that currently exist as outlier populations in the Arctic. Many plant species have characteristics that allow them to survive short snow-free growing seasons, low solar angles, permafrost and low soil temperatures, low nutrient availability and physical disturbance. Many of these characteristics are likely to limit species responses to climate warming, but mainly because of poor competitive ability compared with potential immigrant species. Terrestrial Arctic animals possess many adaptations that enable them to persist under a wide range of temperatures in the Arctic. Many escape unfavorable weather and resource shortage by winter dormancy or by migration. The biotic environment of Arctic animal species is relatively simple with few enemies, competitors, diseases, parasites and available food resources. Terrestrial Arctic animals are likely to be most vulnerable to warmer and drier summers, climatic changes that interfere with migration routes and staging areas, altered snow conditions and freeze-thaw cycles in winter, climate-induced disruption of the seasonal timing of reproduction and development, and influx of new competitors, predators, parasites and diseases. Arctic microorganisms are also well adapted to the Arctics climate: some can metabolize at temperatures down to -39degreesC. Cyanobacteria and algae have a wide range of adaptive strategies that allow them to avoid, or at least minimize UV injury. Microorganisms can tolerate most environmental conditions and they have short generation times which can facilitate rapid adaptation to new environments. In contrast, Arctic plant and animal species are very likely to change their distributions rather than evolve significantly in response to warming.
  •  
10.
  • Callaghan, Terry V., et al. (författare)
  • Climate Change and UV-B Impacts on Arctic Tundra and Polar Desert Ecosystems: Key Findings and Extended Summaries
  • 2004
  • Ingår i: Ambio: a Journal of Human Environment. - 0044-7447. ; 33:7, s. 386-392
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic has become an important region in which to assess the impacts of current climate variability and amplification of projected global warming. This is because i) the Arctic has experienced considerable warming in recent decades (an average of about 3°C and between 4° and 5°C over much of the landmass); i) climate projections suggest a continuation of the warming trend with an increase in mean annual temperatures of 4–5°C by 2080; ii) recent warming is already impacting the environment and economy of the Arctic and these impacts are expected to increase and affect also life style, culture and ecosystems; and iv) changes occurring in the Arctic are likely to affect other regions of the Earth, for example changes in snow, vegetation and sea ice are likely to affect the energy balance and ocean circulation at regional and even global scales (Chapter 1 in ref. 1). Responding to the urgent need to understand and project impacts of changes in climate and UV-B radiation on many facets of the Arctic, the Arctic Climate Impact Assessment (ACIA) (1) undertook a four-year study. Part of this study (1–10) assessed the impacts of changes in climate and UV-B radiation on Arctic terrestrial ecosystems, both those changes already occurring and those likely to occur in the future. Here, we present the key findings of the assessment of climate change impacts on tundra and polar desert ecosystems, and xtended summaries of its components.
  •  
11.
  • Callaghan, Terry V., et al. (författare)
  • Effects of changes in climate on landscape and regional processes, and feedbacks to the climate system
  • 2004
  • Ingår i: Ambio: a Journal of Human Environment. - 0044-7447. ; 33:7, s. 459-468
  • Forskningsöversikt (refereegranskat)abstract
    • Biological and physical processes in the Arctic system operate at various temporal and spatial scales to impact large-scale feedbacks and interactions with the earth system. There are four main potential feedback mechanisms between the impacts of climate change on the Arctic and the global climate system: albedo, greenhouse gas emissions or uptake by ecosystems, greenhouse gas emissions from methane hydrates, and increased freshwater fluxes that could affect the thermohaline circulation. All these feedbacks are controlled to some extent by changes in ecosystem distribution and character and particularly by large-scale movement of vegetation zones. Indications from a few, full annual measurements of CO2 fluxes are that currently the source areas exceed sink areas in geographical distribution. The little available information on CH4 sources indicates that emissions at the landscape level are of great importance for the total greenhouse balance of the circumpolar North. Energy and water balances of Arctic landscapes are also important feedback mechanisms in a changing climate. Increasing density and spatial expansion of vegetation will cause a lowering of the albedo and more energy to be absorbed on the ground. This effect is likely to exceed the negative feedback of increased C sequestration in greater primary productivity resulting from the displacements of areas of polar desert by tundra, and areas of tundra by forest. The degradation of permafrost has complex consequences for trace gas dynamics. In areas of discontinuous permafrost, warming, will lead to a complete loss of the permafrost. Depending on local hydrological conditions this may in turn lead to a wetting or drying of the environment with subsequent implications for greenhouse gas fluxes. Overall, the complex interactions between processes contributing to feedbacks, variability over time and space in these processes, and insufficient data have generated considerable uncertainties in estimating the net effects of climate change on terrestrial feedbacks to the climate system. This uncertainty applies to magnitude, and even direction of some of the feedbacks.
  •  
12.
  • Callaghan, Terry V., et al. (författare)
  • Effects on the structure of arctic ecosystems in the short- and long-term perspectives
  • 2004
  • Ingår i: Ambio: a Journal of Human Environment. - : Royal Swedish Academy of Sciences. - 0044-7447. ; 33:7, s. 436-447
  • Forskningsöversikt (refereegranskat)abstract
    • Species individualistic responses to warming and increased UV-B radiation are moderated by the responses of neighbors within communities, and trophic interactions within ecosystems. All of these responses lead to changes in ecosystem structure. Experimental manipulation of environmental factors expected to change at high latitudes showed that summer warming of tundra vegetation has generally led to smaller changes than fertilizer addition. Some of the factors manipulated have strong effects on the structure of Arctic ecosystems but the effects vary regionally, with the greatest response of plant and invertebrate communities being observed at the coldest locations. Arctic invertebrate communities are very likely to respond rapidly to warming whereas microbial biomass and nutrient stocks are more stable. Experimentally enhanced UV-B radiation altered the community composition of gram-negative bacteria and fungi, but not that of plants. Increased plant productivity due to warmer summers may dominate food-web dynamics. Trophic interactions of tundra and sub-Arctic forest plant-based food webs are centered on a few dominant animal species which often have cyclic population fluctuations that lead to extremely high peak abundances in some years. Population cycles of small rodents and insect defoliators such as the autumn moth affect the structure and diversity of tundra and forest-tundra vegetation and the viability of a number of specialist predators and parasites. Ice crusting in warmer winters is likely to reduce the accessibility of plant food to lemmings, while deep snow may protect them from snow-surface predators. In Fennoscandia, there is evidence already for a pronounced shift in small rodent community structure and dynamics that have resulted in a decline of predators that specialize in feeding on small rodents. Climate is also likely to alter the role of insect pests in the birch forest system: warmer winters may increase survival of eggs and expand the range of the insects. Insects that harass reindeer in the summer are also likely to become more widespread, abundant and active during warmer summers while refuges for reindeer/caribou on glaciers and late snow patches will probably disappear.
  •  
13.
  • Callaghan, Terry V., et al. (författare)
  • Past changes in arctic terrestrial ecosystems, climate and UV radiation
  • 2004
  • Ingår i: Ambio: a Journal of Human Environment. - 0044-7447. ; 33:7, s. 398-403
  • Tidskriftsartikel (refereegranskat)abstract
    • At the last glacial maximum, vast ice sheets covered many continental areas. The beds of some shallow seas were exposed thereby connecting previously separated landmasses. Although some areas were ice-free and supported a flora and fauna, mean annual temperatures were 10-13degreesC colder than during the Holocene. Within a few millennia of the glacial maximum, deglaciation started, characterized by a series of climatic fluctuations between about 18 000 and 11 400 years ago. Following the general thermal maximum in the Holocene, there has been a modest overall cooling trend, superimposed upon which have been a series of millennial and centennial fluctuations in climate such as the "Little Ice Age spanning approximately the late 13th to early 19th centuries. Throughout the climatic fluctuations of the last 150 000 years, Arctic ecosystems and biota have been close to their minimum extent within the most recent 10 000 years. They suffered loss of diversity as a result of extinctions during the most recent large-magnitude rapid global warming at the end of the last glacial stage. Consequently, Arctic ecosystems and biota such as large vertebrates are already under pressure and are particularly vulnerable to current and projected future global warming. Evidence from the past indicates that the treeline will very as it probably advance, perhaps rapidly, into tundra areas, a it did during the early Holocene, reducing the extent of tundra and increasing the risk of species extinction. Species will very probably extend their ranges northwards, displacing Arctic species as in the past. However, unlike the early Holocene, when lower relative sea level allowed a belt of tundra to persist around at least some parts of the Arctic basin when treelines advanced to the present coast, sea level is very likely to rise in future, further restricting the area of tundra and other treeless Arctic ecosystems. The negative response of current Arctic ecosystems to global climatic conditions that are apparently without precedent during the Pleistocene is likely to be considerable, particularly as their exposure to co-occurring environmental changes (such as enhanced levels of UV-B, deposition of nitrogen compounds from the atmosphere, heavy metal and acidic pollution, radioactive contamination, increased habitat fragmentation) is also without precedent.
  •  
14.
  • Callaghan, Terry V., et al. (författare)
  • Rationale, concepts and approach to the assessment
  • 2004
  • Ingår i: Ambio: a Journal of Human Environment. - 0044-7447. ; 33:7, s. 393-397
  • Tidskriftsartikel (refereegranskat)abstract
    • A general recognition that the Arctic will amplify global climate warming, that UV-B radiation may continue to increase there because of possible delays in the repair of stratospheric ozone, and that the Arctic environment and its peoples are likely to be particularly susceptible to such environmental changes stimulated an international assessment of climate change impacts. The Arctic Climate Impacts Assessment (ACIA) is a four-year study, culminating in publication of a major scientific report (1) as well as other products. In this paper and those following in this Ambio Special Issue, we present the findings of the section of the report that focuses on terrestrial ecosystems of the Arctic, from the treeline ecotone to the polar deserts. The Arctic is generally recognized as a treeless wilderness with cold winters and cool summers. However, definitions of the southern boundary vary according to environmental, geographical or political biases. This paper and the assessment in the following papers of this Ambio Special Issue focus on biota (plants, animals and microorganisms) and processes in the region beyond the northern limit of the closed forest (the taiga), but we also include processes south of this boundary that affect ecosystems in the Arctic. Examples are overwintering periods of migratory animals spent in the south and the regulation of the latitudinal treeline. The geographical area we have defined as the current Arctic is the area we use for developing scenarios of future impacts: Our geographical area of interest will not decrease under a scenario of the replacement of current Arctic tundra by boreal forests.
  •  
15.
  • Callaghan, Terry V., et al. (författare)
  • Responses to projected changes in climate and UV-B at the species level
  • 2004
  • Ingår i: Ambio: a Journal of Human Environment. - : Royal Swedish Academy of Sciences. - 0044-7447. ; 33:7, s. 418-435
  • Forskningsöversikt (refereegranskat)abstract
    • Environmental manipulation experiments showed that species respond individualistically to each environmental-change variable. The greatest responses of plants were generally to nutrient, particularly nitrogen, addition. Summer warming experiments showed that woody plant responses were dominant and that mosses and lichens became less abundant. Responses to warming were controlled by moisture availability and snow cover. Many invertebrates increased population growth in response to summer warming, as long as desiccation was not induced. CO2 and UV-B enrichment experiments showed that plant and animal responses were small. However, some microorganisms and species of fungi were sensitive to increased UV-B and some intensive mutagenic actions could, perhaps, lead to unexpected epidemic outbreaks. Tundra soil heating, CO 2 enrichment and amendment with mineral nutrients generally accelerated microbial activity. Algae are likely to dominate cyanobacteria in milder climates. Expected increases in winter freeze-thaw cycles leading to ice-crust formation are likely to severely reduce winter survival rate and disrupt the population dynamics of many terrestrial animals. A deeper snow cover is likely to restrict access to winter pastures by reindeer/caribou and their ability to flee from predators while any earlier onset of the snow-free period is likely to stimulate increased plant growth. Initial species responses to climate change might occur at the sub-species level: an Arctic plant or animal species with high genetic/racial diversity has proved an ability to adapt to different environmental conditions in the past and is likely to do so also in the future. Indigenous knowledge, air photographs, satellite images and monitoring show that changes in the distributions of some species are already occurring: Arctic vegetation is becoming more shrubby and more productive, there have been recent changes in the ranges of caribou, and "new" species of insects and birds previously associated with areas south of the treeline have been recorded. In contrast, almost all Arctic breeding bird species are declining and models predict further quite dramatic reductions of the populations of tundra birds due to warming. Species-climate response surface models predict potential future ranges of current Arctic species that are often markedly reduced and displaced northwards in response to warming. In contrast, invertebrates and microorganisms are very likely to quickly expand their ranges northwards into the Arctic.
  •  
16.
  • Callaghan, Terry V., et al. (författare)
  • Synthesis of effects in four Arctic subregions
  • 2004
  • Ingår i: Ambio: a Journal of Human Environment. - : Royal Swedish Academy of Sciences. - 0044-7447. ; 33:7, s. 469-473
  • Tidskriftsartikel (refereegranskat)abstract
    • An assessment of impacts on Arctic terrestrial ecosystems has emphasized geographical variability in responses of species and ecosystems to environmental change. This variability is usually associated with north-south gradients in climate, biodiversity, vegetation zones, and ecosystem structure and function. It is clear, however, that significant east-west variability in environment, ecosystem structure and function, environmental history, and recent climate variability is also important. Some areas have cooled while others have become warmer. Also, east-west differences between geographical barriers of oceans, archipelagos and mountains have contributed significantly in the past to the ability of species and vegetation zones to relocate in response to climate changes, and they have created the isolation necessary for genetic differentiation of populations and biodiversity hot-spots to occur. These barriers will also affect the ability of species to relocate during projected future warming. To include this east-west variability and also to strike a balance between overgeneralization and overspecialization, the ACIA identified four major sub regions based on large-scale differences in weather and climate-shaping factors. Drawing on information, mostly model output that can be related to the four ACIA subregions, it is evident that geographical barriers to species re-location, particularly the distribution of landmasses and separation by seas, will affect the northwards shift in vegetation zones. The geographical constraints-or facilitation-of northward movement of vegetation zones will affect the future storage and release of carbon, and the exchange of energy and water between biosphere and atmosphere. In addition, differences in the ability of vegetation zones to re-locate will affect the biodiversity associated with each zone while the number of species threatened by climate change varies greatly between subregions with a significant hot-spot in Beringia. Overall, the subregional synthesis demonstrates the difficulty of generalizing projections of responses of ecosystem structure and function species loss, and biospheric feedbacks to the climate system for the whole Arctic region and implies a need for a far greater understanding of the spatial variability in the responses of terrestrial arctic ecosystems to climate change.
  •  
17.
  • Callaghan, Terry V., et al. (författare)
  • Uncertainties and recommendations
  • 2004
  • Ingår i: Ambio: a Journal of Human Environment. - : Royal Swedish Academy of Sciences. - 0044-7447. ; 33:7, s. 474-479
  • Tidskriftsartikel (refereegranskat)abstract
    • An assessment of the impacts of changes in climate and UV-B radiation on Arctic terrestrial ecosystems, made within the Arctic Climate Impacts Assessment (ACIA), highlighted the profound implications of projected warming in particular for future ecosystem services, biodiversity and feedbacks to climate. However, although our current understanding of ecological processes and changes driven by climate and UV-B is strong in some geographical areas and in some disciplines, it is weak in others. Even though recently the strength of our predictions has increased dramatically with increased research effort in the Arctic and the introduction of new technologies, our current understanding is still constrained by various uncertainties. The assessment is based on a range of approaches that each have uncertainties, and on data sets that are often far from complete. Uncertainties arise from methodologies and conceptual frameworks, from unpredictable surprises, from lack of validation of models, and from the use of particular scenarios, rather than predictions, of future greenhouse gas emissions and climates. Recommendations to reduce the uncertainties are wide-ranging and relate to all disciplines within the assessment. However, a repeated theme is the critical importance of achieving an adequate spatial and long-term coverage of experiments, observations and monitoring of environmental changes and their impacts throughout the sparsely populated and remote region that is the Arctic.
  •  
18.
  • Christensen, Pernilla, 1972- (författare)
  • The long-term decline of the grey-sided vole (Clethrionomys rufocanus) in boreal Sweden: importance of focal forest patch and matrix
  • 2006
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • There has been a long-term decline in number of cyclic vole populations in boreal Sweden since the 1970s. Several hypotheses have been suggested to explain this decline. Commonly for C. glareolus, C. rufocanus and M. agrestis, the decline has followed upon an increased frequency and severeness of winter declines and has shown up as a drop in spring densities. The spring decline is most pronounced for C. rufocanus. In contrast to other voles, C. rufocanus also show a decline in fall densities, suggesting some additional disturbance in this species. Habitat fragmentation has been suggested as such an additional disturbance and in this thesis the effect of habitat fragmentation on C. rufocanus is explored. At first the sampling method was evaluated i.e. whether the decline could be due to destructive sampling when the method in use in the long-term monitoring is snap-trapping. This resulted in a rejection of the destructive sampling hypothesis as a possible cause behind the decline in C. rufocanus. Habitat preference revealed that three habitats at the local scale (trap station) were high quality habitats for C. rufocanus: forest of moist and wet/hydric dwarf-shrub type, in addition to forest/swamp complexes rich in dwarf-shrubs. The occurrence of C. rufocanus at the landscape scale was positively correlated with the amount of boulder fields and a low degree of fragmentation of old-growth pine forests. There was considerable local variation in the decline in vole density among the 58 1-ha sampling plots, with respect to both density and timing of the decline, which suggested that habitat destruction outside sampling plots might be involved. Overall, clear-cuts had a negative influence on vole densities at both the local and landscape scale. A multiple regression analysis suggested that having both a high quality habitat at the local scale and a high proximity among xeric-mesic mires and a low connectivity among clear-cuts at the landscape scale were important for the occurrence of C. rufocanus. Initial analysis at the landscape scale were based on landscape data collected from 2.5 x 2.5 km areas centred on the individual vole sampling plots. Further investigations, however, on the patch level suggest that focal forest patch size and quality was of major importance in determining occurrence and persistence of C. rufocanus. Although not tested formally in these studies, the habitat fragmentation hypothesis has so far received support. Currently C. rufocanus seems to be affected negatively by too low patch sizes of suitable habitats in the surrounding landscape suggesting that the amount of suitable habitats could already be below the fragmentation threshold. However, this has to be evaluated further. Work is in progress to establish time-series over local landscape changes, and to evaluate if such changes have been associated with local declines of C. rufocanus and whether habitat loss, true habitat fragmentation or both have been influential.
  •  
19.
  • Lagerholm, Vendela K., et al. (författare)
  • Run to the hills : gene flow among mountain areas leads to low genetic differentiation in the Norwegian lemming
  • 2017
  • Ingår i: Biological Journal of the Linnean Society. - : Oxford University Press (OUP). - 0024-4066 .- 1095-8312. ; 121:1, s. 1-14
  • Tidskriftsartikel (refereegranskat)abstract
    • The endemic Norwegian lemming (Lemmus lemmus) is an icon for cyclic species, famous since the Middle Ages for its enormous population outbreaks and mass movements. Although the drivers behind this cyclicity have been intensively investigated, virtually nothing is known about the extent to which long-distance dispersal during population peaks actually lead to gene flow among mountain tundra areas. In this article, we use nine microsatellite markers to address this question and analyse range-wide genetic diversity and differentiation between Fennoscandian sub-regions. The results revealed a high genetic variation with a surprisingly weak population structure, comparable to that of much larger mammals. The differentiation was mainly characterized as a genetic cline across the species' entire distribution, and results from spatial autocorrelation analyses suggested that gene flow occurs with sufficiently high frequency to create a genetic patch size of 100 km. Further, we found that for the equivalent distances, the southern sub-regions were genetically more similar to each other than those in the north, which indicates that the prolonged periods of interrupted lemming cyclicity recorded in the northern parts of Fennoscandia have led to increased isolation and population differentiation. In summary, we propose that mass movements during peak years act as pulses of gene flow between mountain tundra areas, and that these help to maintain genetic variation and counteract differentiation over vast geographic distances.
  •  
20.
  •  
21.
  • Nyström, Jesper, 1965- (författare)
  • Predator-prey interactions of raptors in an arctic environment
  • 2004
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis concerns the predator-prey interactions of three raptor species in a Swedish arctic community: the gyrfalcon (Falco rusticolus), the rough-legged buzzard (Buteo lagopus) and the golden eagle (Aquila chrysaetos). The gyrfalcon behaved like a highly specialised ptarmigan (Lagopus spp.) predator. Gyrfalcon’s functional response to ptarmigan was close to density independent, and ptarmigan remained the dominating prey even in areas with the lowest ptarmigan density. The gyrfalcon did not respond functionally to microtine rodents (i.e. lemmings and voles) and it was clear that the gyrfalcon did not use microtines as an alternative prey category to ptarmigan. As the gyrfalcons did not switch to any alternative prey when ptarmigan was scarce, their reproductive success seemed to be directly dependent on the amount of ptarmigan available in the breeding territories. Of the two ptarmigan species in the study area, rock ptarmigan (L. mutus) dominated gyrfalcon’s diet. Locally, the proportion of rock ptarmigan in gyrfalcons’ diets showed a positive relationship to the expected availability of rock ptarmigan in the breeding territories, indicating a density dependent utilisation. The rough-legged buzzard behaved like a highly specialised microtine rodent predator and Norwegian lemming (Lemmus lemmus) was its preferred microtine species. The buzzards showed a type 2 functional response to lemmings. Surprisingly though, they also had a type 3 functional response to grey-sided voles (Clethrionomus rufocanus). We present an optimal diet model where a central place forager, during good food conditions, benefits from partial prey preference, which renders separate functional responses to each prey category. We discuss how the double functional responses of the buzzard affect the population dynamics of sympatric vole species, on both temporal and spatial scales. The golden eagle behaved like a generalist predator, and it preyed on all major prey categories in the study area: microtines, ptarmigan, mountain hare, (Lepus timidus) and reindeer (Rangifer tarandus). It seemed to respond functionally to microtine rodent fluctuations with an increased consumption of lemmings during a peak year in the microtine rodent cycle. The golden eagle showed a numerical response to its main prey, the ptarmigan. Ptarmigan, microtine rodents and hares seemed to have synchronized population fluctuations in the study area. Such synchronized population fluctuations are believed to be generated by predation. Although the three raptors are the main predators of their community, their predation patterns fail to explain the observed prey population dynamics in the study area.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-21 av 21
Typ av publikation
tidskriftsartikel (11)
forskningsöversikt (6)
doktorsavhandling (2)
annan publikation (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (17)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Ims, Rolf A. (18)
Christensen, Torben (10)
Johansson, Margareta (9)
Huntley, Brian (9)
Björn, Lars Olof (9)
Jonasson, Sven (9)
visa fler...
Angerbjörn, Anders (6)
Henttonen, Heikki (6)
Ehrich, Dorothee (5)
Norén, Karin (4)
Sitch, Stephen (3)
Dalen, Love (3)
Eide, Nina E. (3)
Yoccoz, Nigel G. (3)
Elmhagen, Bodil (2)
Niemimaa, Jukka (2)
Gilg, Olivier (2)
Chapin, F. Stuart, I ... (1)
Bret-Harte, M. Syndo ... (1)
McGuire, A. David (1)
Schmidt, Niels Marti ... (1)
Lecomte, Nicolas (1)
Angerbjörn, Anders, ... (1)
Nilsson, Christer (1)
Tannerfeldt, Magnus (1)
Berglund, Håkan (1)
Moen, Jon (1)
Keskitalo, E. Carina ... (1)
Elberling, Bo (1)
Fox, Anthony D. (1)
Post, Eric (1)
Samelius, Gustaf (1)
Hellström, Peter (1)
Killengreen, Siw (1)
Landa, Arild (1)
Meijer, Tomas (1)
Mela, Matti (1)
Roth, James D. (1)
Prost, Stefan (1)
Oksanen, Tarja (1)
Oksanen, Lauri (1)
Olofsson, Johan (1)
Smith, Paul A. (1)
Hik, David S. (1)
Bråthen, Kari Anne (1)
Wookey, Philip A. (1)
Schindler, Daniel E. (1)
Jansson, Roland (1)
Ecke, Frauke (1)
Ersmark, Erik (1)
visa färre...
Lärosäte
Lunds universitet (11)
Stockholms universitet (8)
Umeå universitet (3)
Naturhistoriska riksmuseet (2)
Sveriges Lantbruksuniversitet (1)
Språk
Engelska (21)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (20)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy