SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Iraola Aitor) "

Search: WFRF:(Iraola Aitor)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Iraola, Aitor, et al. (author)
  • Microtomography-based Inter-Granular Network for the simulation of radionuclide diffusion and sorption in a granitic rock
  • 2017
  • In: Journal of Contaminant Hydrology. - : Elsevier BV. - 0169-7722 .- 1873-6009. ; 207, s. 8-16
  • Journal article (peer-reviewed)abstract
    • Field investigation studies, conducted in the context of safety analyses of deep geological repositories for nuclear waste, have pointed out that in fractured crystalline rocks sorbing radionuclides can diffuse surprisingly long distances deep into the intact rock matrix; i.e. much longer distances than those predicted by reactive transport models based on a homogeneous description of the properties of the rock matrix. Here, we focus on cesium diffusion and use detailed micro characterisation data, based on micro computed tomography, along with a grain-scale Inter-Granular Network model, to offer a plausible explanation for the anomalously long cesium penetration profiles observed in these in-situ experiments. The sparse distribution of chemically reactive grains (i.e. grains belonging to sorbing mineral phases) is shown to have a strong control on the diffusive patterns of sorbing radionuclides. The computed penetration profiles of cesium agree well with an analytical model based on two parallel diffusive pathways. This agreement, along with visual inspection of the spatial distribution of cesium concentration, indicates that for sorbing radionuclides the medium indeed behaves as a composite system, with most of the mass being retained close to the injection boundary and a non-negligible part diffusing faster along preferential diffusive pathways.
  •  
2.
  • Soler, Josep M., et al. (author)
  • Predictive and Inverse Modeling of a Radionuclide Diffusion Experiment in Crystalline Rock at ONKALO (Finland)
  • 2023
  • In: Nuclear Technology. - : Informa UK Limited. - 0029-5450 .- 1943-7471. ; 209:11, s. 1765-1784
  • Journal article (peer-reviewed)abstract
    • The REPRO-TDE test was performed at a depth of about 400 m in the ONKALO underground research facility in Finland. Synthetic groundwater containing radionuclide tracers [tritiated water tracer (HTO), 36Cl, 22Na, 133Ba, and 134Cs] was circulated for about 4 years in a packed-off interval of the injection borehole. Tracer activities were additionally monitored in two observation boreholes. The test was the subject of a modeling exercise by the SKB GroundWater Flow and Transport of Solutes Task Force. Eleven teams participated in the exercise, using different model concepts and approaches. Predictive model calculations were based on laboratory-based information concerning porosities, diffusion coefficients, and sorption partition coefficients. After the experimental results were made available, the teams were able to revise their models to reproduce the observations. General conclusions from these back-analysis calculations include the need for reduced effective diffusion coefficients for 36Cl compared to those applicable to HTO (anion exclusion), the need to implement weaker sorption for 22Na compared to results from laboratory batch sorption experiments, and the observation of large differences between the theoretical initial concentrations for the strongly sorbing 133Ba and 134Cs, and the first measured values a few hours after tracer injection. Different teams applied different concepts, concerning mainly the implementation of isotropic versus anisotropic diffusion, or the possible existence of borehole disturbed zones around the different boreholes. The role of microstructure was also addressed in two of the models.
  •  
3.
  • Soler, Josep, et al. (author)
  • Modelling of the LTDE-SD radionuclide diffusion experiment in crystalline rock at the Aspo Hard Rock Laboratory (Sweden)
  • 2022
  • In: Geologica Acta. - : Universitat Autònoma de Barcelona. - 1695-6133 .- 1696-5728. ; 20, s. 1-32
  • Journal article (peer-reviewed)abstract
    • This study shows a comparison and analysis of results from a modelling exercise concerning a field experiment involving the transport and retention of different radionuclide tracers in crystalline rock. This exercise was performed within the Swedish Nuclear Fuel and Waste Management Company (SKB) Task Force on Modelling of Groundwater Flow and Transport of Solutes (Task Force GWFTS). Task 9B of the Task Force GWFTS was the second subtask within Task 9 and focused on the modelling of experimental results from the Long Term Sorption Diffusion Experiment in situ tracer test. The test had been performed at a depth of about 410m in the Aspo Hard Rock Laboratory. Synthetic groundwater containing a cocktail of radionuclide tracers was circulated for 198 days on the natural surface of a fracture and in a narrow slim hole drilled in unaltered rock matrix. Overcoring of the rock after the end of the test allowed for the measurement of tracer distribution profiles in the rock from the fracture surface (A cores) and also from the slim hole (D cores). The measured tracer activities in the rock samples showed long profiles (several cm) for non-or weakly-sorbing tracers (Cl-36, Na-22), but also for many of the more strongly-sorbing radionuclides. The understanding of this unexpected feature was one of the main motivations for this modelling exercise. However, re-evaluation and revision of the data during the course of Task 9B provided evidence that the anomalous long tails at low activities for strongly sorbing tracers were artefacts due to cross-contamination during rock sample preparation. A few data points remained for Cs-137, Ba-133, Ni-63 and Cd-109, but most measurements at long distances from the tracer source (>10mm) were now below the reported detection limits. Ten different modelling teams provided results for this exercise, using different concepts and codes. The tracers that were finally considered were Na-22, Cl-36, Co-57, Ni-63, Ba-133, Cs-137, Cd-109, Ra-226 and Np-237. Three main types of models were used: i) analytical solutions to the transport-retention equations, ii) continuum -porous-medium numerical models, and iii) microstructure-based models accounting for small-scale heterogeneity (i.e. mineral grains, porosities and/or microfracture distributions) and potential centimetre-scale fractures. The modelling by the different teams led to some important conclusions, concerning for instance the presence of a disturbed zone (a few mm in thickness) next to the fracture surface and to the wall of the slim hole and the role of micro-fractures and cm-scale fractures in the transport of weakly sorbing tracers. These conclusions could be reached after the re-evaluation and revision of the experimental data (tracer profiles in the rock) and the analysis of the different sets of model results provided by the different teams.
  •  
4.
  • Trinchero, Paolo, et al. (author)
  • Experimental and numerical analysis of flow through a natural rough fracture subject to normal loading
  • 2024
  • In: Scientific Reports. - : Springer Nature. - 2045-2322. ; 14:1
  • Journal article (peer-reviewed)abstract
    • Fractured crystalline rocks have been chosen or are under consideration by several countries as host rock formations for deep geological repositories for spent nuclear fuel. In such geological formations, flow and solute transport are mostly controlled by a network of connected natural fractures, each of them being characterised by internal heterogeneity, also denoted as roughness. Fractures are, in turn, subject to variable load caused by various factors, such as the presence of thick ice sheets formed during glaciation periods. Understanding how coupled hydro-mechanical (HM) processes affect flow and transport at the scale of a single natural fracture is crucial for a robust parameterisation of large-scale discrete fracture network models, which are not only used for nuclear waste disposal applications but are also of interest to problems related to geothermics, oil and gas production or groundwater remediation. In this work, we analyse and model an HM experiment carried out in a single natural fracture and use the results of both, the experimental and the modelling work, to get insights into fundamental questions such as the applicability of local cubic law or the effect of normal load on channeling. The initial fracture aperture was obtained from laser scanning of the two fracture surfaces and an equivalent initial aperture was then defined by moving the two fracture surfaces together and comparing the results obtained using a Navier–Stokes based computational fluid dynamics (CFD) model with the experimental flowrate obtained for unloaded conditions. The mechanical effect of the different loading stages was simulated using a high-resolution contact model. The different computed fracture apertures were then used to run groundwater flow simulations using a modified Reynolds equation. The results show that, without correction, local cubic law largely overestimates flowrates. Instead, we show that by explicitly acknowledging the difference between the mechanical aperture and the hydraulic aperture and setting the latter equal to 1/5 of the former, cubic law provides a very reasonable approximation of the experimental flowrates over the entire loading cycle. A positive correlation between fluid flow channeling and normal load is also found.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view