SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Isomaa B.) "

Sökning: WFRF:(Isomaa B.)

  • Resultat 1-50 av 56
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Speliotes, Elizabeth K., et al. (författare)
  • Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index
  • 2010
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:11, s. 937-948
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is globally prevalent and highly heritable, but its underlying genetic factors remain largely elusive. To identify genetic loci for obesity susceptibility, we examined associations between body mass index and ~2.8 million SNPs in up to 123,865 individuals with targeted follow up of 42 SNPs in up to 125,931 additional individuals. We confirmed 14 known obesity susceptibility loci and identified 18 new loci associated with body mass index (P < 5 × 10−8), one of which includes a copy number variant near GPRC5B. Some loci (at MC4R, POMC, SH2B1 and BDNF) map near key hypothalamic regulators of energy balance, and one of these loci is near GIPR, an incretin receptor. Furthermore, genes in other newly associated loci may provide new insights into human body weight regulation.
  •  
2.
  • Heid, Iris M, et al. (författare)
  • Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution
  • 2010
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:11, s. 949-960
  • Tidskriftsartikel (refereegranskat)abstract
    • Waist-hip ratio (WHR) is a measure of body fat distribution and a predictor of metabolic consequences independent of overall adiposity. WHR is heritable, but few genetic variants influencing this trait have been identified. We conducted a meta-analysis of 32 genome-wide association studies for WHR adjusted for body mass index (comprising up to 77,167 participants), following up 16 loci in an additional 29 studies (comprising up to 113,636 subjects). We identified 13 new loci in or near RSPO3, VEGFA, TBX15-WARS2, NFE2L3, GRB14, DNM3-PIGC, ITPR2-SSPN, LY86, HOXC13, ADAMTS9, ZNRF3-KREMEN1, NISCH-STAB1 and CPEB4 (P = 1.9 × 10⁻⁹ to P = 1.8 × 10⁻⁴⁰) and the known signal at LYPLAL1. Seven of these loci exhibited marked sexual dimorphism, all with a stronger effect on WHR in women than men (P for sex difference = 1.9 × 10⁻³ to P = 1.2 × 10⁻¹³). These findings provide evidence for multiple loci that modulate body fat distribution independent of overall adiposity and reveal strong gene-by-sex interactions.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Manning, Alisa, et al. (författare)
  • A Low-Frequency Inactivating AKT2 Variant Enriched in the Finnish Population Is Associated With Fasting Insulin Levels and Type 2 Diabetes Risk
  • 2017
  • Ingår i: Diabetes. - : AMER DIABETES ASSOC. - 0012-1797 .- 1939-327X. ; 66:7, s. 2019-2032
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify novel coding association signals and facilitate characterization of mechanisms influencing glycemic traits and type 2 diabetes risk, we analyzed 109,215 variants derived from exome array genotyping together with an additional 390,225 variants from exome sequence in up to 39,339 normoglycemic individuals from five ancestry groups. We identified a novel association between the coding variant (p.Pro50Thr) in AKT2 and fasting plasma insulin (FI), a gene in which rare fully penetrant mutations are causal for monogenic glycemic disorders. The low-frequency allele is associated with a 12% increase in FI levels. This variant is present at 1.1% frequency in Finns but virtually absent in individuals from other ancestries. Carriers of the FI-increasing allele had increased 2-h insulin values, decreased insulin sensitivity, and increased risk of type 2 diabetes (odds ratio 1.05). In cellular studies, the AKT2-Thr50 protein exhibited a partial loss of function. We extend the allelic spectrum for coding variants in AKT2 associated with disorders of glucose homeostasis and demonstrate bidirectional effects of variants within the pleckstrin homology domain of AKT2.
  •  
7.
  • Palmer, Nicholette D, et al. (författare)
  • A genome-wide association search for type 2 diabetes genes in African Americans.
  • 2012
  • Ingår i: PloS one. - San Francisco : Public Library of Science (PLoS). - 1932-6203. ; 7:1, s. e29202-
  • Tidskriftsartikel (refereegranskat)abstract
    • African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10(-8)). SNP rs7560163 (P = 7.0×10(-9), OR (95% CI) = 0.75 (0.67-0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10(-5)) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations.
  •  
8.
  • Flannick, Jason, et al. (författare)
  • Data Descriptor : Sequence data and association statistics from 12,940 type 2 diabetes cases and controls
  • 2017
  • Ingår i: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (> 80% of low-frequency coding variants in similar to ~82 K Europeans via the exome chip, and similar to ~90% of low-frequency non-coding variants in similar to ~44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D.
  •  
9.
  • Fuchsberger, Christian, et al. (författare)
  • The genetic architecture of type 2 diabetes
  • 2016
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 536:7614, s. 41-47
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes.
  •  
10.
  • Mahajan, Anubha, et al. (författare)
  • Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes
  • 2018
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 50:4, s. 559-571
  • Tidskriftsartikel (refereegranskat)abstract
    • We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 × 10−7); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent ‘false leads’ with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.
  •  
11.
  • Scott, Robert A., et al. (författare)
  • An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans
  • 2017
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 66:11, s. 2888-2902
  • Tidskriftsartikel (refereegranskat)abstract
    • To characterize type 2 diabetes (T2D)-associated variation across the allele frequency spectrum, we conducted a meta-analysis of genome-wide association data from 26,676 T2D case and 132,532 control subjects of European ancestry after imputation using the 1000 Genomes multiethnic reference panel. Promising association signals were followed up in additional data sets (of 14,545 or 7,397 T2D case and 38,994 or 71,604 control subjects). We identified 13 novel T2D-associated loci (P < 5 x 10(-8)), including variants near the GLP2R, GIP, and HLA-DQA1 genes. Our analysis brought the total number of independent T2D associations to 128 distinct signals at 113 loci. Despite substantially increased sample size and more complete coverage of low-frequency variation, all novel associations were driven by common single nucleotide variants. Credible sets of potentially causal variants were generally larger than those based on imputation with earlier reference panels, consistent with resolution of causal signals to common risk haplotypes. Stratification of T2D-associated loci based on T2D-related quantitative trait associations revealed tissue-specific enrichment of regulatory annotations in pancreatic islet enhancers for loci influencing insulin secretion and in adipocytes, monocytes, and hepatocytes for insulin action-associated loci. These findings highlight the predominant role played by common variants of modest effect and the diversity of biological mechanisms influencing T2D pathophysiology.
  •  
12.
  • Willer, Cristen J., et al. (författare)
  • Six new loci associated with body mass index highlight a neuronal influence on body weight regulation
  • 2009
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 41:1, s. 25-34
  • Tidskriftsartikel (refereegranskat)abstract
    • Common variants at only two loci, FTO and MC4R, have been reproducibly associated with body mass index (BMI) in humans. To identify additional loci, we conducted meta-analysis of 15 genome-wide association studies for BMI (n > 32,000) and followed up top signals in 14 additional cohorts (n > 59,000). We strongly confirm FTO and MC4R and identify six additional loci (P < 5 x 10(-8)): TMEM18, KCTD15, GNPDA2, SH2B1, MTCH2 and NEGR1 (where a 45-kb deletion polymorphism is a candidate causal variant). Several of the likely causal genes are highly expressed or known to act in the central nervous system (CNS), emphasizing, as in rare monogenic forms of obesity, the role of the CNS in predisposition to obesity.
  •  
13.
  •  
14.
  • Kilpeläinen, Tuomas O, et al. (författare)
  • Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile.
  • 2011
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 43:8, s. 753-60
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies have identified 32 loci influencing body mass index, but this measure does not distinguish lean from fat mass. To identify adiposity loci, we meta-analyzed associations between ∼2.5 million SNPs and body fat percentage from 36,626 individuals and followed up the 14 most significant (P < 10(-6)) independent loci in 39,576 individuals. We confirmed a previously established adiposity locus in FTO (P = 3 × 10(-26)) and identified two new loci associated with body fat percentage, one near IRS1 (P = 4 × 10(-11)) and one near SPRY2 (P = 3 × 10(-8)). Both loci contain genes with potential links to adipocyte physiology. Notably, the body-fat-decreasing allele near IRS1 is associated with decreased IRS1 expression and with an impaired metabolic profile, including an increased visceral to subcutaneous fat ratio, insulin resistance, dyslipidemia, risk of diabetes and coronary artery disease and decreased adiponectin levels. Our findings provide new insights into adiposity and insulin resistance.
  •  
15.
  • Kilpeläinen, Tuomas O, et al. (författare)
  • Physical activity attenuates the influence of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children.
  • 2011
  • Ingår i: PLoS medicine. - : Public Library of Science (PLoS). - 1549-1676 .- 1549-1277. ; 8:11
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The FTO gene harbors the strongest known susceptibility locus for obesity. While many individual studies have suggested that physical activity (PA) may attenuate the effect of FTO on obesity risk, other studies have not been able to confirm this interaction. To confirm or refute unambiguously whether PA attenuates the association of FTO with obesity risk, we meta-analyzed data from 45 studies of adults (n=218,166) and nine studies of children and adolescents (n=19,268). METHODS AND FINDINGS: All studies identified to have data on the FTO rs9939609 variant (or any proxy [r(2)>0.8]) and PA were invited to participate, regardless of ethnicity or age of the participants. PA was standardized by categorizing it into a dichotomous variable (physically inactive versus active) in each study. Overall, 25% of adults and 13% of children were categorized as inactive. Interaction analyses were performed within each study by including the FTO×PA interaction term in an additive model, adjusting for age and sex. Subsequently, random effects meta-analysis was used to pool the interaction terms. In adults, the minor (A-) allele of rs9939609 increased the odds of obesity by 1.23-fold/allele (95% CI 1.20-1.26), but PA attenuated this effect (p(interaction) =0.001). More specifically, the minor allele of rs9939609 increased the odds of obesity less in the physically active group (odds ratio =1.22/allele, 95% CI 1.19-1.25) than in the inactive group (odds ratio =1.30/allele, 95% CI 1.24-1.36). No such interaction was found in children and adolescents. CONCLUSIONS: The association of the FTO risk allele with the odds of obesity is attenuated by 27% in physically active adults, highlighting the importance of PA in particular in those genetically predisposed to obesity.
  •  
16.
  • Lettre, Guillaume, et al. (författare)
  • Identification of ten loci associated with height highlights new biological pathways in human growth
  • 2008
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 40:5, s. 584-591
  • Tidskriftsartikel (refereegranskat)abstract
    • Height is a classic polygenic trait, reflecting the combined influence of multiple as-yet- undiscovered genetic factors. We carried out a meta-analysis of genome-wide association study data of height from 15,821 individuals at 2.2 million SNPs, and followed up the strongest findings in 410,000 subjects. Ten newly identified and two previously reported loci were strongly associated with variation in height (P values from 4 x 10(-7) to 8 x 10(-22)). Together, these 12 loci account for similar to 2% of the population variation in height. Individuals with <= 8 height-increasing alleles and >= 16 height-increasing alleles differ in height by similar to 3.5 cm. The newly identified loci, along with several additional loci with strongly suggestive associations, encompass both strong biological candidates and unexpected genes, and highlight several pathways (let-7 targets, chromatin remodeling proteins and Hedgehog signaling) as important regulators of human stature. These results expand the picture of the biological regulation of human height and of the genetic architecture of this classical complex trait.
  •  
17.
  • Saxena, Richa, et al. (författare)
  • Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge
  • 2010
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:2, s. 142-148
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucose levels 2 h after an oral glucose challenge are a clinical measure of glucose tolerance used in the diagnosis of type 2 diabetes. We report a meta-analysis of nine genome-wide association studies (n = 15,234 nondiabetic individuals) and a follow-up of 29 independent loci (n = 6,958–30,620). We identify variants at the GIPR locus associated with 2-h glucose level (rs10423928, β (s.e.m.) = 0.09 (0.01) mmol/l per A allele, P = 2.0 × 10−15). The GIPR A-allele carriers also showed decreased insulin secretion (n = 22,492; insulinogenic index, P = 1.0 × 10−17; ratio of insulin to glucose area under the curve, P = 1.3 × 10−16) and diminished incretin effect (n = 804; P = 4.3 × 10−4). We also identified variants at ADCY5 (rs2877716, P = 4.2 × 10−16), VPS13C (rs17271305, P = 4.1 × 10−8), GCKR (rs1260326, P = 7.1 × 10−11) and TCF7L2 (rs7903146, P = 4.2 × 10−10) associated with 2-h glucose. Of the three newly implicated loci (GIPR, ADCY5 and VPS13C), only ADCY5 was found to be associated with type 2 diabetes in collaborating studies (n = 35,869 cases, 89,798 controls, OR = 1.12, 95% CI 1.09–1.15, P = 4.8 × 10−18).
  •  
18.
  • Voight, Benjamin F., et al. (författare)
  • Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis
  • 2010
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:7, s. 579-589
  • Tidskriftsartikel (refereegranskat)abstract
    • By combining genome-wide association data from 8,130 individuals with type 2 diabetes (T2D) and 38,987 controls of European descent and following up previously unidentified meta-analysis signals in a further 34,412 cases and 59,925 controls, we identified 12 new T2D association signals with combined P < 5 x 10(-8). These include a second independent signal at the KCNQ1 locus; the first report, to our knowledge, of an X-chromosomal association (near DUSP9); and a further instance of overlap between loci implicated in monogenic and multifactorial forms of diabetes (at HNF1A). The identified loci affect both beta-cell function and insulin action, and, overall, T2D association signals show evidence of enrichment for genes involved in cell cycle regulation. We also show that a high proportion of T2D susceptibility loci harbor independent association signals influencing apparently unrelated complex traits.
  •  
19.
  •  
20.
  • Flannick, Jason, et al. (författare)
  • Loss-of-function mutations in SLC30A8 protect against type 2 diabetes.
  • 2014
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 46:4, s. 357-357
  • Tidskriftsartikel (refereegranskat)abstract
    • Loss-of-function mutations protective against human disease provide in vivo validation of therapeutic targets, but none have yet been described for type 2 diabetes (T2D). Through sequencing or genotyping of ∼150,000 individuals across 5 ancestry groups, we identified 12 rare protein-truncating variants in SLC30A8, which encodes an islet zinc transporter (ZnT8) and harbors a common variant (p.Trp325Arg) associated with T2D risk and glucose and proinsulin levels. Collectively, carriers of protein-truncating variants had 65% reduced T2D risk (P = 1.7 × 10(-6)), and non-diabetic Icelandic carriers of a frameshift variant (p.Lys34Serfs*50) demonstrated reduced glucose levels (-0.17 s.d., P = 4.6 × 10(-4)). The two most common protein-truncating variants (p.Arg138* and p.Lys34Serfs*50) individually associate with T2D protection and encode unstable ZnT8 proteins. Previous functional study of SLC30A8 suggested that reduced zinc transport increases T2D risk, and phenotypic heterogeneity was observed in mouse Slc30a8 knockouts. In contrast, loss-of-function mutations in humans provide strong evidence that SLC30A8 haploinsufficiency protects against T2D, suggesting ZnT8 inhibition as a therapeutic strategy in T2D prevention.
  •  
21.
  • Isomaa, B., et al. (författare)
  • A family history of diabetes is associated with reduced physical fitness in the Prevalence, Prediction and Prevention of Diabetes (PPP)-Botnia study
  • 2010
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 53:8, s. 1709-1713
  • Tidskriftsartikel (refereegranskat)abstract
    • We studied the impact of a family history of type 2 diabetes on physical fitness, lifestyle factors and diabetes-related metabolic factors. The Prevalence, Prediction and Prevention of Diabetes (PPP)-Botnia study is a population-based study in Western Finland, which includes a random sample of 5,208 individuals aged 18 to 75 years identified through the national Finnish Population Registry. Physical activity, dietary habits and family history of type 2 diabetes were assessed by questionnaires and physical fitness by a validated 2 km walking test. Insulin secretion and action were assessed based upon OGTT measurements of insulin and glucose. A family history of type 2 diabetes was associated with a 2.4-fold risk of diabetes and lower physical fitness (maximal aerobic capacity 29.2 +/- 7.2 vs 32.1 +/- 7.0, p = 0.01) despite having similar reported physical activity to that of individuals with no family history. The same individuals also had reduced insulin secretion adjusted for insulin resistance, i.e. disposition index (p < 0.001) despite having higher BMI (27.4 +/- 4.6 vs 26.0 +/- 4.3 kg/m(2), p < 0.001). Individuals with a family history of type 2 diabetes are characterised by lower physical fitness, which cannot solely be explained by lower physical activity. They also have an impaired capacity of beta cells to compensate for an increase in insulin resistance imposed by an increase in BMI. These defects should be important targets for interventions aiming at preventing type 2 diabetes in individuals with inherited susceptibility to the disease.
  •  
22.
  • Isomaa, B., et al. (författare)
  • Cardiovascular morbidity and mortality associated with the metabolic syndrome
  • 2001
  • Ingår i: Diabetes Care. - 1935-5548. ; 24:4, s. 683-689
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE - To estimate the prevalence of and the cardiovascular risk associated with the metabolic syndrome using the new definition proposed by the World Health Organisation (WHO). RESEARCH DESIGN AND METHODS - A total of 4,483 subjects aged 35-70 years participating in a large family study of type 2 diabetes in Finland and Sweden (the Botnia study) were included in the analysis of cardiovascular risk associated with the metabolic syndrome. in subjects who had type 2 diabetes in = 1,697) impaired fasting glucose (IFG)/impaired glucose tolerance (IGT) (n = 798), or insulin-resistance with normal glucose tolerance (NGT) (n = 1,988). the metabolic syndrome was de fined as presence of at least two of the following risk factors: obesity hypertension, dyslipidemia, or microalbuminuria. Cardiovascular mortality was assessed in 3,606 subjects with a median follow-up of 6.9 years. RESULTS - In women and men, respectively, the metabolic syndrome was seen in 10 and 15% of subjects with NGT. 42 and 64% of those with IFG/IGT, and 78 and 84% of those with type 2 diabetes. The risk for coronary heart disease and stroke was increased threefold in subjects with the syndrome (P < 0.001). Cardiovascular mortality was markedly increased in subjects with the metabolic syndrome (12.0 vs. 2.2%, P < 0.001) Of the individual components of the metabolic syndrome, microalbuminuria conferred the strongest risk of cardiovascular death (RR 2.80. P = 0.002). CONCLUSIONS - The WHO definition of the metabolic syndrome identifies subjects with increased cardiovascular morbidity and mortality and offers a tool for comparison of results from different studies.
  •  
23.
  • Liljestrom, B, et al. (författare)
  • Genetic testing for maturity onset diabetes of the young: uptake, attitudes and comparison with hereditary non-polyposis colorectal cancer
  • 2005
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 48:2, s. 242-250
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: Mutations in hepatic nuclear factor 1alpha cause a monogenic form of diabetes, maturity onset diabetes of the young type 3 (MODY3). Our aim was 1) to assess the uptake of genetic testing for MODY3 and to determine factors affecting it, and ( 2) to compare attitudes to predictive genetic testing between families with MODY3 and a previously studied group at risk of hereditary nonpolyposis colorectal cancer (HNPCC). Methods: Adult members of two extended MODY3 pedigrees, either with diabetes or a 50% risk of having inherited the mutation (n = 144, age 18 - 60 years), were invited to an educational counselling session followed by a possibility to obtain the gene test result. Data were collected through questionnaires before counselling and 1 month after the test disclosure. Results: Eighty-nine out of 144 (62%) participated in counselling, and all but one wanted the test result disclosed. No significant sociodemographic differences were observed between the participants and non-participants. The counselling uptake was similar among diabetic and nondiabetic subjects. Uncertainty about the future and the risk for the children were the most common reasons to take the gene test. At follow-up, most subjects in both MODY3 (100%) and HNPCC (99%) families were satisfied with their decision to take the test and trusted the result. The majority of both diabetic and non-diabetic subjects considered that the MODY3 gene test should be offered either in childhood ( 50 and 37%) or as a teenager ( 30 and 37%). Conclusions: Genetic testing for MODY3 was well accepted among both diabetic and non-diabetic participants. The subjects found the gene test reliable and they were satisfied with their decision regarding the predictive test.
  •  
24.
  • Scott, Robert A, et al. (författare)
  • No interactions between previously associated 2-hour glucose gene variants and physical activity or BMI on 2-hour glucose levels
  • 2012
  • Ingår i: Diabetes. - Alexandria, VA : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 61:5, s. 1291-1296
  • Tidskriftsartikel (refereegranskat)abstract
    • Gene-lifestyle interactions have been suggested to contribute to the development of type 2 diabetes. Glucose levels 2 h after a standard 75-g glucose challenge are used to diagnose diabetes and are associated with both genetic and lifestyle factors. However, whether these factors interact to determine 2-h glucose levels is unknown. We meta-analyzed single nucleotide polymorphism (SNP) × BMI and SNP × physical activity (PA) interaction regression models for five SNPs previously associated with 2-h glucose levels from up to 22 studies comprising 54,884 individuals without diabetes. PA levels were dichotomized, with individuals below the first quintile classified as inactive (20%) and the remainder as active (80%). BMI was considered a continuous trait. Inactive individuals had higher 2-h glucose levels than active individuals (β = 0.22 mmol/L [95% CI 0.13-0.31], P = 1.63 × 10(-6)). All SNPs were associated with 2-h glucose (β = 0.06-0.12 mmol/allele, P ≤ 1.53 × 10(-7)), but no significant interactions were found with PA (P > 0.18) or BMI (P ≥ 0.04). In this large study of gene-lifestyle interaction, we observed no interactions between genetic and lifestyle factors, both of which were associated with 2-h glucose. It is perhaps unlikely that top loci from genome-wide association studies will exhibit strong subgroup-specific effects, and may not, therefore, make the best candidates for the study of interactions.
  •  
25.
  • Zeggini, Eleftheria, et al. (författare)
  • Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes
  • 2008
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 40:5, s. 638-645
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association (GWA) studies have identified multiple loci at which common variants modestly but reproducibly influence risk of type 2 diabetes (T2D)(1-11). Established associations to common and rare variants explain only a small proportion of the heritability of T2D. As previously published analyses had limited power to identify variants with modest effects, we carried out meta-analysis of three T2D GWA scans comprising 10,128 individuals of European descent and similar to 2.2 million SNPs (directly genotyped and imputed), followed by replication testing in an independent sample with an effective sample size of up to 53,975. We detected at least six previously unknown loci with robust evidence for association, including the JAZF1 (P=5.0 x 10(-14)), CDC123-CAMK1D (P=1.2 x 10(-10)), TSPAN8-LGR5 (P=1.1 x 10(-9)), THADA (P=1.1 x 10(-9)), ADAMTS9 (P=1.2 x 10(-8)) and NOTCH2 (P=4.1 x 10(-8)) gene regions. Our results illustrate the value of large discovery and follow-up samples for gaining further insights into the inherited basis of T2D.
  •  
26.
  •  
27.
  • Ahlqvist, Emma, et al. (författare)
  • A common variant upstream of the PAX6 gene influences islet function in man.
  • 2012
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 55, s. 94-104
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: Impaired glucose tolerance and impaired insulin secretion have been reported in families with PAX6 mutations and it is suggested that they result from defective proinsulin processing due to lack of prohormone convertase 1/3, encoded by PCSK1. We investigated whether a common PAX6 variant would mimic these findings and explored in detail its effect on islet function in man. METHODS: A PAX6 candidate single nucleotide polymorphism (rs685428) was associated with fasting insulin levels in the Diabetes Genetics Initiative genome-wide association study. We explored its potential association with glucose tolerance and insulin processing and secretion in three Scandinavian cohorts (N = 8,897 individuals). In addition, insulin secretion and the expression of PAX6 and transcriptional target genes were studied in human pancreatic islets. RESULTS: rs685428 G allele carriers had lower islet mRNA expression of PAX6 (p = 0.01) and PCSK1 (p = 0.001) than AA homozygotes. The G allele was associated with increased fasting insulin (p (replication) = 0.02, p (all) = 0.0008) and HOMA-insulin resistance (p (replication) = 0.02, p (all) = 0.001) as well as a lower fasting proinsulin/insulin ratio (p (all) = 0.008) and lower fasting glucagon (p = 0.04) and gastric inhibitory peptide (GIP) (p = 0.05) concentrations. Arginine-stimulated (p = 0.02) insulin secretion was reduced in vivo, which was further reflected by a reduction of glucose- and potassium-stimulated insulin secretion (p = 0.002 and p = 0.04, respectively) in human islets in vitro. CONCLUSIONS/INTERPRETATION: A common variant in PAX6 is associated with reduced PAX6 and PCSK1 expression in human islets and reduced insulin response, as well as decreased glucagon and GIP concentrations and decreased insulin sensitivity. These findings emphasise the central role of PAX6 in the regulation of islet function and glucose metabolism in man.
  •  
28.
  •  
29.
  • Ahmad, Shafqat, et al. (författare)
  • Telomere length in blood and skeletal muscle in relation to measures of glycaemia and insulinaemia.
  • 2012
  • Ingår i: Diabetic Medicine: A journal of the British Diabetic Association. - : Wiley. - 1464-5491 .- 0742-3071. ; 29:10, s. 377-381
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: Skeletal muscle is a major metabolic organ and plays important roles in glucose metabolism, insulin sensitivity and insulin action. Muscle telomere length reflects the myocyte's exposure to harmful environmental factors. Leukocyte telomere length is considered a marker of muscle telomere length and is used in epidemiologic studies to assess associations with ageing-related diseases where muscle physiology is important. However, the extent to which leucocyte and muscle telomere length are correlated is unknown, as are their relative correlations with glucose and insulin concentrations. The purpose of this study was to determine the extent of these relationships. Methods: Leucocyte and muscle telomere length were measured by quantitative real-time polymerase chain reaction in participants from the Malmö Exercise Intervention (n = 27) and the Prevalence, Prediction and Prevention of Diabetes-Botnia studies (n = 31). Participants in both studies were free from Type 2 diabetes. We assessed the association between leucocyte telomere length, muscle telomere length and metabolic traits using Spearmen correlations and multivariate linear regression. Bland-Altman analysis was used to assess agreement between leucocyte and muscle telomere length. Results: In age-, study-, diabetes family history- and sex-adjusted models, leucocyte and muscle telomere length were positively correlated (r = 0.39, 95% CI 0.15-0.59). Leucocyte telomere length was inversely associated with 2-h glucose concentrations (r = -0.58, 95% CI -1.0 to -0.16), but there was no correlation between muscle telomere length and 2-h glucose concentrations (r = 0.05, 95% CI -0.35 to 0.46) or between leucocyte or muscle telomere length with other metabolic traits. Conclusions: In summary, the current study supports the use of leucocyte telomere length as a proxy for muscle telomere length in epidemiological studies of Type 2 diabetes aetiology.
  •  
30.
  • Alkayyali, Sami, et al. (författare)
  • Common variant in the HMGA2 gene increases susceptibility to nephropathy in patients with type 2 diabetes.
  • 2012
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X.
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: Type 2 diabetes is a chronic metabolic disorder associated with devastating microvascular complications. Genome-wide association studies have identified more than 60 genetic variants associated with type 2 diabetes and/or glucose and insulin traits, but their role in the progression of diabetes is not established. The aim of this study was to explore whether these variants were also associated with the development of nephropathy in patients with type 2 diabetes. METHODS: We studied 28 genetic variants in 2,229 patients with type 2 diabetes from the local Malmö Scania Diabetes Registry (SDR) published during 2007-2010. Diabetic nephropathy (DN) was defined as micro- or macroalbuminuria and/or end-stage renal disease. Estimated glomerular filtration rate (eGFR) was assessed using the MDRD-4 formula. Replication genotyping of rs1531343 was performed in diabetic (Steno type 2 diabetes [n = 345], Genetics of Diabetes Audit and Research in Tayside Scotland [Go-DARTS] [n = 784]) and non-diabetic (Malmö Preventive Project [n = 2,523], Botnia study [n = 2,247]) cohorts. RESULTS: In the SDR, HMGA2 single-nucleotide polymorphism rs1531343 was associated with DN (OR 1.50, 95% CI 1.20, 1.87, p = 0.00035). In the combined analysis totalling 3,358 patients with type 2 diabetes (n = 1,233 cases, n = 2,125 controls), carriers of the C-allele had a 1.45-fold increased risk of developing nephropathy (95% CI 1.20, 1.75, p = 0.00010). Furthermore, the risk C-allele was associated with lower eGFR in patients with type 2 diabetes (n = 2,499, β ± SEM, -3.7 ± 1.2 ml/min, p = 0.002) and also in non-diabetic individuals (n = 17,602, β ± SEM, -0.008 ± 0.003 ml/min (log( e )), p = 0.006). CONCLUSIONS/INTERPRETATION: These data demonstrate that the HMGA2 variant seems to be associated with increased risk of developing nephropathy in patients with type 2 diabetes and lower eGFR in both diabetic and non-diabetic individuals and could thus be a common denominator in the pathogenesis of type 2 diabetes and kidney complications.
  •  
31.
  • Almgren, Peter, et al. (författare)
  • Heritability and familiality of type 2 diabetes and related quantitative traits in the Botnia Study.
  • 2011
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 54, s. 2811-2819
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: To study the heritability and familiality of type 2 diabetes and related quantitative traits in families from the Botnia Study in Finland. METHODS: Heritability estimates for type 2 diabetes adjusted for sex, age and BMI are provided for different age groups of type 2 diabetes and for 34 clinical and metabolic traits in 5,810 individuals from 942 families using a variance component model (SOLAR). In addition, family means of these traits and their distribution across families are calculated. RESULTS: The strongest heritability for type 2 diabetes was seen in patients with age at onset 35-60 years (h (2) = 0.69). However, including patients with onset up to 75 years dropped the h (2) estimates to 0.31. Among quantitative traits, the highest h (2) estimates in all individuals and in non-diabetic individuals were seen for lean body mass (h (2) = 0.53-0.65), HDL-cholesterol (0.52-0.61) and suppression of NEFA during OGTT (0.63-0.76) followed by measures of insulin secretion (insulinogenic index [IG(30)] = 0.41-0.50) and insulin action (insulin sensitivity index [ISI] = 0.37-0.40). In contrast, physical activity showed rather low heritability (0.16-0.18), whereas smoking showed strong heritability (0.57-0.59). Family means of these traits differed two- to fivefold between families belonging to the lowest and highest quartile of the trait (p < 0.00001). CONCLUSIONS/INTERPRETATION: To detect stronger genetic effects in type 2 diabetes, it seems reasonable to restrict inclusion of patients to those with age at onset 35-60 years. Sequencing of families with extreme quantitative traits could be an important next step in the dissection of the genetics of type 2 diabetes.
  •  
32.
  • Fall, Tove, et al. (författare)
  • The Role of Adiposity in Cardiometabolic Traits : A Mendelian Randomization Analysis
  • 2013
  • Ingår i: PLoS Medicine. - : Public Library of Science (PLoS). - 1549-1277 .- 1549-1676. ; 10:6, s. e1001474-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The association between adiposity and cardiometabolic traits is well known from epidemiological studies. Whilst the causal relationship is clear for some of these traits, for others it is not. We aimed to determine whether adiposity is causally related to various cardiometabolic traits using the Mendelian randomization approach. Methods and Findings: We used the adiposity-associated variant rs9939609 at the FTO locus as an instrumental variable (IV) for body mass index (BMI) in a Mendelian randomization design. Thirty-six population-based studies of individuals of European descent contributed to the analyses. Age-and sex-adjusted regression models were fitted to test for association between (i) rs9939609 and BMI (n = 198,502), (ii) rs9939609 and 24 traits, and (iii) BMI and 24 traits. The causal effect of BMI on the outcome measures was quantified by IV estimators. The estimators were compared to the BMI-trait associations derived from the same individuals. In the IV analysis, we demonstrated novel evidence for a causal relationship between adiposity and incident heart failure (hazard ratio, 1.19 per BMI-unit increase; 95% CI, 1.03-1.39) and replicated earlier reports of a causal association with type 2 diabetes, metabolic syndrome, dyslipidemia, and hypertension (odds ratio for IV estimator, 1.1-1.4; all p<0.05). For quantitative traits, our results provide novel evidence for a causal effect of adiposity on the liver enzymes alanine aminotransferase and gamma-glutamyl transferase and confirm previous reports of a causal effect of adiposity on systolic and diastolic blood pressure, fasting insulin, 2-h post-load glucose from the oral glucose tolerance test, C-reactive protein, triglycerides, and high-density lipoprotein cholesterol levels (all p<0.05). The estimated causal effects were in agreement with traditional observational measures in all instances except for type 2 diabetes, where the causal estimate was larger than the observational estimate (p = 0.001). Conclusions: We provide novel evidence for a causal relationship between adiposity and heart failure as well as between adiposity and increased liver enzymes.
  •  
33.
  • Fredriksson, Jenny, et al. (författare)
  • Variation in GYS1 Interacts with Exercise and Gender to Predict Cardiovascular Mortality
  • 2007
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 2:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Background. The muscle glycogen synthase gene (GYS1) has been associated with type 2 diabetes (T2D), the metabolic syndrome (MetS), male myocardial infarction and a defective increase in muscle glycogen synthase protein in response to exercise. We addressed the questions whether polymorphism in GYS1 can predict cardiovascular (CV) mortality in a high-risk population, if this risk is influenced by gender or physical activity, and if the association is independent of genetic variation in nearby apolipoprotein E gene (APOE). Methodology/Principal Findings. Polymorphisms in GYS1 (XbaIC>T) and APOE (-219G>T, epsilon 2/epsilon 3/epsilon 4) were genotyped in 4,654 subjects participating in the Botnia T2D-family study and followed for a median of eight years. Mortality analyses were performed using Cox proportional-hazards regression. During the follow-up period, 749 individuals died, 409 due to CV causes. In males the GYS1 XbaI T-allele (hazard ratio (HR) 1.9 [1.2-2.9]), T2D (2.5 [1.7-3.8]), earlier CV events (1.7 [1.2-2.5]), physical inactivity (1.9 [1.2-2.9]) and smoking (1.5 [1.0-2.3]) predicted CV mortality. The GYS1 XbaI T-allele predicted CV mortality particularly in physically active males (HR 1.7 [1.3-2.0]). Association of GYS1 with CV mortality was independent of APOE (219TT/epsilon 4), which by its own exerted an effect on CV mortality risk in females (2.9 [1.9-4.4]). Other independent predictors of CV mortality in females were fasting plasma glucose (1.2 [1.1-1.2]), high body mass index (BMI) (1.0 [1.0-1.1]), hypertension (1.9 [1.2-3.1]), earlier CV events (1.9 [1.3-2.8]) and physical inactivity (1.9 [1.2-2.8]). Conclusions/Significance. Polymorphisms in GYS1 and APOE predict CV mortality in T2D families in a gender-specific fashion and independently of each other. Physical exercise seems to unmask the effect associated with the GYS1 polymorphism, rendering carriers of the variant allele less susceptible to the protective effect of exercise on the risk of CV death, which finding could be compatible with a previous demonstration of defective increase in the glycogen synthase protein in carriers of this polymorphism.
  •  
34.
  • Guey, Lin T., et al. (författare)
  • Power in the Phenotypic Extremes: A Simulation Study of Power in Discovery and Replication of Rare Variants
  • 2011
  • Ingår i: Genetic Epidemiology. - : Wiley. - 0741-0395. ; 35:4, s. 236-246
  • Tidskriftsartikel (refereegranskat)abstract
    • Next-generation sequencing technologies are making it possible to study the role of rare variants in human disease. Many studies balance statistical power with cost-effectiveness by (a) sampling from phenotypic extremes and (b) utilizing a two-stage design. Two-stage designs include a broad-based discovery phase and selection of a subset of potential causal genes/variants to be further examined in independent samples. We evaluate three parameters: first, the gain in statistical power due to extreme sampling to discover causal variants; second, the informativeness of initial (Phase I) association statistics to select genes/variants for follow-up; third, the impact of extreme and random sampling in (Phase 2) replication. We present a quantitative method to select individuals from the phenotypic extremes of a binary trait, and simulate disease association studies under a variety of sample sizes and sampling schemes. First, we find that while studies sampling from extremes have excellent power to discover rare variants, they have limited power to associate them to phenotype-suggesting high false-negative rates for upcoming studies. Second, consistent with previous studies, we find that the effect sizes estimated in these studies are expected to be systematically larger compared with the overall population effect size; in a well-cited lipids study, we estimate the reported effect to be twofold larger. Third, replication studies require large samples from the general population to have sufficient power; extreme sampling could reduce the required sample size as much as fourfold. Our observations offer practical guidance for the design and interpretation of studies that utilize extreme sampling. Genet. Epidemiol. 35: 236-246, 2011. (c) 2011 Wiley-Liss, Inc.
  •  
35.
  • Holmkvist, Johan, et al. (författare)
  • Polymorphisms in the gene encoding the voltage-dependent Ca(2+) channel Ca (V)2.3 (CACNA1E) are associated with type 2 diabetes and impaired insulin secretion
  • 2007
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 50:12, s. 2467-2475
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: Glucose-stimulated insulin secretion is dependent on the electrical activity of beta cells; hence, genes encoding beta cell ion channels are potential candidate genes for type 2 diabetes. The gene encoding the voltage-dependent Ca(2+) channel Ca(V)2.3 (CACNA1E), telomeric to a region that has shown suggestive linkage to type 2 diabetes (1q21-q25), has been ascribed a role for second-phase insulin secretion. METHODS: Based upon the genotyping of 52 haplotype tagging single nucleotide polymorphisms (SNPs) in a type 2 diabetes case-control sample (n = 1,467), we selected five SNPs that were nominally associated with type 2 diabetes and genotyped them in the following groups (1) a new case-control sample of 6,570 individuals from Sweden; (2) 2,293 individuals from the Botnia prospective cohort; and (3) 935 individuals with insulin secretion data from an IVGTT. RESULTS: The rs679931 TT genotype was associated with (1) an increased risk of type 2 diabetes in the Botnia case-control sample [odds ratio (OR) 1.4, 95% CI 1.0-2.0, p = 0.06] and in the replication sample (OR 1.2, 95% CI 1.0-1.5, p = 0.01 one-tailed), with a combined OR of 1.3 (95% CI 1.1-1.5, p = 0.004 two-tailed); (2) reduced insulin secretion [insulinogenic index at 30 min p = 0.02, disposition index (D (I)) p = 0.03] in control participants during an OGTT; (3) reduced second-phase insulin secretion at 30 min (p = 0.04) and 60 min (p = 0.02) during an IVGTT; and (4) reduced D (I) over time in the Botnia prospective cohort (p = 0.05). CONCLUSIONS/INTERPRETATION: We conclude that genetic variation in the CACNA1E gene contributes to an increased risk of the development of type 2 diabetes by reducing insulin secretion.
  •  
36.
  •  
37.
  • Ingelsson, Erik, et al. (författare)
  • Detailed Physiologic Characterization Reveals Diverse Mechanisms for Novel Genetic Loci Regulating Glucose and Insulin Metabolism in Humans
  • 2010
  • Ingår i: Diabetes. - 0012-1797 .- 1939-327X. ; 59:5, s. 1266-1275
  • Konferensbidrag (refereegranskat)abstract
    • OBJECTIVE-Recent genome-wide association studies have revealed loci associated with glucose and insulin-related traits. We aimed to characterize 19 such loci using detailed measures of insulin processing, secretion, and sensitivity to help elucidate their role in regulation of glucose control, insulin secretion and/or action. RESEARCH DESIGN AND METHODS-We investigated associations of loci identified by the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) with circulating proinsulin, measures of insulin secretion and sensitivity from oral glucose tolerance tests (OGTTs), euglycemic clamps, insulin suppression tests, or frequently sampled intravenous glucose tolerance tests in nondiabetic humans (n = 29,084). RESULTS-The glucose-raising allele in MADD was associated with abnormal insulin processing (a dramatic effect on higher proinsulin levels, but no association with insulinogenic index) at extremely persuasive levels of statistical significance (P = 2.1 x 10(-71)). Defects in insulin processing and insulin secretion were seen in glucose-raising allele carriers at TCF7L2, SCL30A8, GIPR, and C2CD4B. Abnormalities in early insulin secretion were suggested in glucose-raising allele carriers at MTNR1B, GCK, FADS1, DGKB, and PROX1 (lower insulinogenic index; no association with proinsulin or insulin sensitivity). Two loci previously associated with fasting insulin (GCKR and IGF1) were associated with OGTT-derived insulin sensitivity indices in a consistent direction. CONCLUSIONS-Genetic loci identified through their effect on hyperglycemia and/or hyperinsulinemia demonstrate considerable heterogeneity in associations with measures of insulin processing, secretion, and sensitivity. Our findings emphasize the importance of detailed physiological characterization of such loci for improved understanding of pathways associated with alterations in glucose homeostasis and eventually type 2 diabetes. Diabetes 59:1266-1275, 2010
  •  
38.
  • Ingelsson, Erik, et al. (författare)
  • Detailed physiologic characterization reveals diverse mechanisms for novel genetic Loci regulating glucose and insulin metabolism in humans
  • 2010
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 59:5, s. 1266-1275
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE Recent genome-wide association studies have revealed loci associated with glucose and insulin-related traits. We aimed to characterize 19 such loci using detailed measures of insulin processing, secretion, and sensitivity to help elucidate their role in regulation of glucose control, insulin secretion and/or action. RESEARCH DESIGN AND METHODS We investigated associations of loci identified by the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) with circulating proinsulin, measures of insulin secretion and sensitivity from oral glucose tolerance tests (OGTTs), euglycemic clamps, insulin suppression tests, or frequently sampled intravenous glucose tolerance tests in nondiabetic humans (n = 29,084). RESULTS The glucose-raising allele in MADD was associated with abnormal insulin processing (a dramatic effect on higher proinsulin levels, but no association with insulinogenic index) at extremely persuasive levels of statistical significance (P = 2.1 x 10(-71)). Defects in insulin processing and insulin secretion were seen in glucose-raising allele carriers at TCF7L2, SCL30A8, GIPR, and C2CD4B. Abnormalities in early insulin secretion were suggested in glucose-raising allele carriers at MTNR1B, GCK, FADS1, DGKB, and PROX1 (lower insulinogenic index; no association with proinsulin or insulin sensitivity). Two loci previously associated with fasting insulin (GCKR and IGF1) were associated with OGTT-derived insulin sensitivity indices in a consistent direction. CONCLUSIONS Genetic loci identified through their effect on hyperglycemia and/or hyperinsulinemia demonstrate considerable heterogeneity in associations with measures of insulin processing, secretion, and sensitivity. Our findings emphasize the importance of detailed physiological characterization of such loci for improved understanding of pathways associated with alterations in glucose homeostasis and eventually type 2 diabetes.
  •  
39.
  • Isomaa, B, et al. (författare)
  • The metabolic syndrome influences the risk of chronic complications in patients with type II diabetes
  • 2001
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 44:9, s. 1148-1154
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: We examined features of the metabolic syndrome to see if they modified the risk of chronic diabetic complications in patients with Type II (non-insulin-dependent) diabetes mellitus. METHODS: A total of 85 randomly selected patients with the metabolic syndrome (WHO definition) were compared with 85 Type II diabetic patients matched for age, sex, duration of diabetes, glycaemic control and without the syndrome to assess the microvascular and macrovascular complications. RESULTS: The patients with the metabolic syndrome had a higher prevalence of cardiovascular disease (52 vs 21%, p < 0.001), microalbuminuria or macroalbuminuria (23 vs 7%, p = 0.003) and distal neuropathy (16 vs 6%, p = 0.048) than patients without the syndrome. The patients with the metabolic syndrome had smaller LDL particle size (25.4+/-1.4 vs 26.4+/-1.1 nm; p < 0.001), which correlated with the ratio of serum triglycerides to HDL cholesterol (r = -0.64, p < 0.001). In a multiple logistic regression analysis the metabolic syndrome was associated with coronary heart disease (RR 3.84, p < 0.001) and microalbuminuria (RR 3.99, p = 0.01). Small LDL particle size was independently associated with neuropathy (RR 0.58; p = 0.04), whereas a high HbA1c was related to neuropathy (RR 1.69, p = 0.04), retinopathy (RR 1.53, p = 0.002) and microalbuminuria (RR 1.54, p = 0.01). CONCLUSION/INTERPRETATION: Although chronic hyperglycaemia is the main predictor of microvascular complications in patients with Type II diabetes, this risk is modified by some of the components of the metabolic syndrome.
  •  
40.
  • Jonsson, A, et al. (författare)
  • Assessing the effect of interaction between an FTO variant (rs9939609) and physical activity on obesity in 15,925 Swedish and 2,511 Finnish adults.
  • 2009
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 52:7, s. 1334-1338
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: Recent reports have suggested that genotypes at the FTO locus interact with physical activity to modify levels of obesity-related traits. We tested this hypothesis in two non-diabetic population-based cohorts, the first from southern Sweden and the second from the Botnia region of western Finland. METHODS: In total 2,511 Finnish and 15,925 Swedish non-diabetic middle-aged adults were genotyped for the FTO rs9939609 variant. Physical activity was assessed by questionnaires and standard clinical procedures were conducted, including measures of height and weight and glucose regulation. Tests of gene x physical activity interaction were performed using linear interaction effects to determine whether the effect of this variant on BMI is modified by physical activity. RESULTS: The minor A allele at rs9939609 was associated with higher BMI in both cohorts, with the per allele difference in BMI being about 0.13 and 0.43 kg/m(2) in the Swedish and Finnish cohorts, respectively (p < 0.0001). The test of interaction between physical activity and the rs9939609 variant on BMI was not statistically significant after controlling for age and sex in either cohort (Sweden: p = 0.71, Finland: p = 0.18). CONCLUSIONS/INTERPRETATION: The present report does not support the notion that physical activity modifies the effects of the FTO rs9939609 variant on obesity risk in the non-diabetic Swedish or Finnish adults studied here.
  •  
41.
  • Jonsson, Anna, et al. (författare)
  • Effect of a common variant of the PCSK2 gene on reduced insulin secretion.
  • 2012
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X.
  • Tidskriftsartikel (refereegranskat)abstract
    • AIM/HYPOTHESIS: Individuals at risk of developing type 2 diabetes show a progressive decline in insulin secretion and increased insulin resistance over time. However, inability of the beta cells to compensate for the increased insulin resistance represents a key defect leading to overt type 2 diabetes. The aims of the present study were to replicate the association between genetic variants of the PCSK2 gene and insulin secretion, and to explore the effect on risk of type 2 diabetes. METHODS: Replication of PCSK2 variants against insulin secretion included 7,682 non-diabetic Scandinavian individuals. Insulin secretion was measured as the corrected insulin response or disposition index, i.e. insulin secretion adjusted for the degree of insulin resistance. Risk of type 2 diabetes was studied in 28,287 Scandinavian individuals. RESULTS: The C-allele of PCSK2 rs2208203 was associated with reduced insulin secretion measured as the corrected insulin response (n = 8,151; β = -0.112, p = 1.3 × 10(-6)) as well as disposition index (n = 8,078, β = -0.128, p = 1.6 × 10(-7)). The variant was also associated with lower fasting glucagon levels (β = -0.084, p = 0.005) in non-diabetic individuals with a fasting plasma glucose of over 5.5 mmol/l. In human pancreatic islets, PCSK2 expression correlated negatively with HbA(1c) (n = 133, r = -0.196, p = 0.038), and showed a tendency to be lower in hyperglycaemic (HbA(1c) ≥6.0% or type 2 diabetes; n = 47, p = 0.13) than normoglycaemic (HbA(1c) >6.0%; n = 66) donors. The presence of the PCSK2 rs2208203 risk allele did not influence gene expression, nor did it show an apparent risk in terms of type 2 diabetes. CONCLUSIONS/INTERPRETATION: A variant of the PCSK2 gene was associated with reduced glucose-stimulated insulin secretion, but also with lower glucagon levels, which could potentially counteract the effects of decreased insulin secretion on the risk of type 2 diabetes.
  •  
42.
  •  
43.
  •  
44.
  • Lindgren, Cecilia M, et al. (författare)
  • Genome-wide association scan meta-analysis identifies three Loci influencing adiposity and fat distribution.
  • 2009
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 5:6, s. e1000508-
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify genetic loci influencing central obesity and fat distribution, we performed a meta-analysis of 16 genome-wide association studies (GWAS, N = 38,580) informative for adult waist circumference (WC) and waist-hip ratio (WHR). We selected 26 SNPs for follow-up, for which the evidence of association with measures of central adiposity (WC and/or WHR) was strong and disproportionate to that for overall adiposity or height. Follow-up studies in a maximum of 70,689 individuals identified two loci strongly associated with measures of central adiposity; these map near TFAP2B (WC, P = 1.9x10(-11)) and MSRA (WC, P = 8.9x10(-9)). A third locus, near LYPLAL1, was associated with WHR in women only (P = 2.6x10(-8)). The variants near TFAP2B appear to influence central adiposity through an effect on overall obesity/fat-mass, whereas LYPLAL1 displays a strong female-only association with fat distribution. By focusing on anthropometric measures of central obesity and fat distribution, we have identified three loci implicated in the regulation of human adiposity.
  •  
45.
  • Mahajan, Anubha, et al. (författare)
  • Identification and Functional Characterization of G6PC2 Coding Variants Influencing Glycemic Traits Define an Effector Transcript at the G6PC2-ABCB11 Locus.
  • 2015
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7404 .- 1553-7390. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome wide association studies (GWAS) for fasting glucose (FG) and insulin (FI) have identified common variant signals which explain 4.8% and 1.2% of trait variance, respectively. It is hypothesized that low-frequency and rare variants could contribute substantially to unexplained genetic variance. To test this, we analyzed exome-array data from up to 33,231 non-diabetic individuals of European ancestry. We found exome-wide significant (P<5×10-7) evidence for two loci not previously highlighted by common variant GWAS: GLP1R (p.Ala316Thr, minor allele frequency (MAF)=1.5%) influencing FG levels, and URB2 (p.Glu594Val, MAF = 0.1%) influencing FI levels. Coding variant associations can highlight potential effector genes at (non-coding) GWAS signals. At the G6PC2/ABCB11 locus, we identified multiple coding variants in G6PC2 (p.Val219Leu, p.His177Tyr, and p.Tyr207Ser) influencing FG levels, conditionally independent of each other and the non-coding GWAS signal. In vitro assays demonstrate that these associated coding alleles result in reduced protein abundance via proteasomal degradation, establishing G6PC2 as an effector gene at this locus. Reconciliation of single-variant associations and functional effects was only possible when haplotype phase was considered. In contrast to earlier reports suggesting that, paradoxically, glucose-raising alleles at this locus are protective against type 2 diabetes (T2D), the p.Val219Leu G6PC2 variant displayed a modest but directionally consistent association with T2D risk. Coding variant associations for glycemic traits in GWAS signals highlight PCSK1, RREB1, and ZHX3 as likely effector transcripts. These coding variant association signals do not have a major impact on the trait variance explained, but they do provide valuable biological insights.
  •  
46.
  • Prokopenko, Inga, et al. (författare)
  • A Central Role for GRB10 in Regulation of Islet Function in Man.
  • 2014
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7404 .- 1553-7390. ; 10:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Variants in the growth factor receptor-bound protein 10 (GRB10) gene were in a GWAS meta-analysis associated with reduced glucose-stimulated insulin secretion and increased risk of type 2 diabetes (T2D) if inherited from the father, but inexplicably reduced fasting glucose when inherited from the mother. GRB10 is a negative regulator of insulin signaling and imprinted in a parent-of-origin fashion in different tissues. GRB10 knock-down in human pancreatic islets showed reduced insulin and glucagon secretion, which together with changes in insulin sensitivity may explain the paradoxical reduction of glucose despite a decrease in insulin secretion. Together, these findings suggest that tissue-specific methylation and possibly imprinting of GRB10 can influence glucose metabolism and contribute to T2D pathogenesis. The data also emphasize the need in genetic studies to consider whether risk alleles are inherited from the mother or the father.
  •  
47.
  • Prokopenko, Inga, et al. (författare)
  • Variants in MTNR1B influence fasting glucose levels
  • 2009
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 41:1, s. 77-81
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify previously unknown genetic loci associated with fasting glucose concentrations, we examined the leading association signals in ten genome-wide association scans involving a total of 36,610 individuals of European descent. Variants in the gene encoding melatonin receptor 1B (MTNR1B) were consistently associated with fasting glucose across all ten studies. The strongest signal was observed at rs10830963, where each G allele (frequency 0.30 in HapMap CEU) was associated with an increase of 0.07 (95% CI = 0.06-0.08) mmol/l in fasting glucose levels (P = 3.2 x 10(-50)) and reduced beta-cell function as measured by homeostasis model assessment (HOMA-B, P = 1.1 x 10(-15)). The same allele was associated with an increased risk of type 2 diabetes (odds ratio = 1.09 (1.05-1.12), per G allele P = 3.3 x 10(-7)) in a meta-analysis of 13 case-control studies totaling 18,236 cases and 64,453 controls. Our analyses also confirm previous associations of fasting glucose with variants at the G6PC2 (rs560887, P = 1.1 x 10(-57)) and GCK (rs4607517, P = 1.0 x 10(-25)) loci.
  •  
48.
  • Rönn, Tina, et al. (författare)
  • Age influences DNA methylation and gene expression of COX7A1 in human skeletal muscle.
  • 2008
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 51:7, s. 1159-1168
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: Reduced oxidative capacity of the mitochondria in skeletal muscle has been suggested to contribute to insulin resistance and type 2 diabetes. Moreover, a set of genes influencing oxidative phosphorylation (OXPHOS) is downregulated in diabetic muscle. Here we studied whether genetic, epigenetic and non-genetic factors influence a component of the respiratory chain, COX7A1, previously shown to be downregulated in skeletal muscle from patients with type 2 diabetes. The specific aims were to: (1) evaluate the impact of genetic (single nucleotide polymorphisms [SNPs]), epigenetic (DNA methylation) and non-genetic (age) factors on the expression of COX7A1 in human skeletal muscle; and (2) investigate whether common variants in the COX7A1 gene are associated with increased risk of type 2 diabetes. METHODS: COX7A1 mRNA expression was analysed in muscle biopsies from young (n = 110) and elderly (n = 86) non-diabetic twins and related to measures of in vivo metabolism. Genetic variants (three SNPs) from the COX7A1 locus were genotyped in the twins and in two independent type 2 diabetes case-control cohorts (n = 1466 and 6380, respectively). DNA methylation of the COX7A1 promoter was analysed in a subset of twins (ten young, ten elderly) using bisulphite sequencing. RESULTS: While DNA methylation of the COX7A1 promoter was increased in muscle from elderly compared with young twins (19.9 +/- 8.3% vs 1.8 +/- 2.7%; p = 0.035), the opposite was found for COX7A1 mRNA expression (elderly 1.00 +/- 0.05 vs young 1.68 +/- 0.06; p = 0.0005). The heritability of COX7A1 expression was estimated to be 50% in young and 72% in elderly twins. One of the polymorphisms investigated, rs753420, influenced basal COX7A1 expression in muscle of young (p = 0.0001) but not of elderly twins. The transcript level of COX7A1 was associated with increased in vivo glucose uptake and [Formula: see text] (p = 0.009 and p = 0.001, respectively). We did not observe any genetic association between COX7A1 polymorphisms and type 2 diabetes after correcting for multiple testing. CONCLUSIONS/INTERPRETATION: Our results provide further evidence for age as a factor influencing DNA methylation and expression of OXPHOS genes, and thereby in vivo metabolism.
  •  
49.
  •  
50.
  • Saxena, R, et al. (författare)
  • Comprehensive association testing of common mitochondrial DNA variation in metabolic disease
  • 2006
  • Ingår i: American Journal of Human Genetics. - 0002-9297. ; 79:1, s. 54-61
  • Tidskriftsartikel (refereegranskat)abstract
    • Many lines of evidence implicate mitochondria in phenotypic variation: ( a) rare mutations in mitochondrial proteins cause metabolic, neurological, and muscular disorders; ( b) alterations in oxidative phosphorylation are characteristic of type 2 diabetes, Parkinson disease, Huntington disease, and other diseases; and ( c) common missense variants in the mitochondrial genome ( mtDNA) have been implicated as having been subject to natural selection for adaptation to cold climates and contributing to "energy deficiency" diseases today. To test the hypothesis that common mtDNA variation influences human physiology and disease, we identified all 144 variants with frequency > 1% in Europeans from > 900 publicly available European mtDNA sequences and selected 64 tagging single-nucleotide polymorphisms that efficiently capture all common variation ( except the hypervariable D-loop). Next, we evaluated the complete set of common mtDNA variants for association with type 2 diabetes in a sample of 3,304 diabetics and 3,304 matched nondiabetic individuals. Association of mtDNA variants with other metabolic traits ( body mass index, measures of insulin secretion and action, blood pressure, and cholesterol) was also tested in subsets of this sample. We did not find a significant association of common mtDNA variants with these metabolic phenotypes. Moreover, we failed to identify any physiological effect of alleles that were previously proposed to have been adaptive for energy metabolism in human evolution. More generally, this comprehensive association-testing framework can readily be applied to other diseases for which mitochondrial dysfunction has been implicated.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 56
Typ av publikation
tidskriftsartikel (49)
konferensbidrag (7)
Typ av innehåll
refereegranskat (54)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Groop, Leif (54)
Lyssenko, Valeriya (32)
Isomaa, B. (29)
Isomaa, Bo (27)
Tuomi, Tiinamaija (26)
Almgren, Peter (22)
visa fler...
Laakso, Markku (21)
Boehnke, Michael (21)
Wareham, Nicholas J. (20)
Kuusisto, Johanna (20)
McCarthy, Mark I (20)
Mohlke, Karen L (20)
Tuomilehto, Jaakko (19)
Prokopenko, Inga (19)
Jackson, Anne U. (19)
Barroso, Ines (18)
Collins, Francis S. (18)
Tuomi, T. (17)
Ingelsson, Erik (16)
Salomaa, Veikko (15)
Pedersen, Oluf (15)
Hansen, Torben (15)
Hu, Frank B. (15)
Langenberg, Claudia (15)
Loos, Ruth J F (15)
Bonnycastle, Lori L. (15)
Lind, Lars (14)
Altshuler, David (14)
Illig, Thomas (14)
Meigs, James B. (14)
Frayling, Timothy M (14)
Nilsson, Peter (13)
Qi, Lu (13)
Thorleifsson, Gudmar (13)
Thorsteinsdottir, Un ... (13)
Stefansson, Kari (13)
Hattersley, Andrew T (13)
Walker, Mark (13)
Froguel, Philippe (13)
Morris, Andrew D (13)
Dupuis, Josée (13)
Voight, Benjamin F. (13)
Narisu, Narisu (13)
Grarup, Niels (12)
Mangino, Massimo (12)
Gieger, Christian (12)
Spector, Timothy D (12)
Palmer, Colin N. A. (12)
Meitinger, Thomas (12)
Grallert, Harald (12)
visa färre...
Lärosäte
Lunds universitet (52)
Uppsala universitet (24)
Karolinska Institutet (16)
Umeå universitet (11)
Göteborgs universitet (7)
Stockholms universitet (1)
visa fler...
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (56)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (53)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy