SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ittyerah Ranjit) "

Sökning: WFRF:(Ittyerah Ranjit)

  • Resultat 1-13 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • de Flores, Robin, et al. (författare)
  • Characterization of hippocampal subfields using ex vivo MRI and histology data : Lessons for in vivo segmentation
  • 2020
  • Ingår i: Hippocampus. - : Wiley. - 1050-9631 .- 1098-1063. ; 30:6, s. 545-564
  • Tidskriftsartikel (refereegranskat)abstract
    • Hippocampal subfield segmentation on in vivo MRI is of great interest for cognition, aging, and disease research. Extant subfield segmentation protocols have been based on neuroanatomical references, but these references often give limited information on anatomical variability. Moreover, there is generally a mismatch between the orientation of the histological sections and the often anisotropic coronal sections on in vivo MRI. To address these issues, we provide a detailed description of hippocampal anatomy using a postmortem dataset containing nine specimens of subjects with and without dementia, which underwent a 9.4 T MRI and histological processing. Postmortem MRI matched the typical orientation of in vivo images and segmentations were generated in MRI space, based on the registered annotated histological sections. We focus on the following topics: the order of appearance of subfields, the location of subfields relative to macroanatomical features, the location of subfields in the uncus and tail and the composition of the dark band, a hypointense layer visible in T2-weighted MRI. Our main findings are that: (a) there is a consistent order of appearance of subfields in the hippocampal head, (b) the composition of subfields is not consistent in the anterior uncus, but more consistent in the posterior uncus, (c) the dark band consists only of the CA-stratum lacunosum moleculare, not the strata moleculare of the dentate gyrus, (d) the subiculum/CA1 border is located at the middle of the width of the hippocampus in the body in coronal plane, but moves in a medial direction from anterior to posterior, and (e) the variable location and composition of subfields in the hippocampal tail can be brought back to a body-like appearance when reslicing the MRI scan following the curvature of the tail. Our findings and this publicly available dataset will hopefully improve anatomical accuracy of future hippocampal subfield segmentation protocols.
  •  
2.
  • Ravikumar, Sadhana, et al. (författare)
  • Ex vivo MRI atlas of the human medial temporal lobe : characterizing neurodegeneration due to tau pathology
  • 2021
  • Ingår i: Acta Neuropathologica Communications. - : Springer Science and Business Media LLC. - 2051-5960. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Tau neurofibrillary tangle (NFT) pathology in the medial temporal lobe (MTL) is closely linked to neurodegeneration, and is the early pathological change associated with Alzheimer’s disease (AD). To elucidate patterns of structural change in the MTL specifically associated with tau pathology, we compared high-resolution ex vivo MRI scans of human postmortem MTL specimens with histology-based pathological assessments of the MTL. MTL specimens were obtained from twenty-nine brain donors, including patients with AD, other dementias, and individuals with no known history of neurological disease. Ex vivo MRI scans were combined using a customized groupwise diffeomorphic registration approach to construct a 3D probabilistic atlas that captures the anatomical variability of the MTL. Using serial histology imaging in eleven specimens, we labelled the MTL subregions in the atlas based on cytoarchitecture. Leveraging the atlas and neuropathological ratings of tau and TAR DNA-binding protein 43 (TDP-43) pathology severity, morphometric analysis was performed to correlate regional MTL thickness with the severity of tau pathology, after correcting for age and TDP-43 pathology. We found significant correlations between tau pathology and thickness in the entorhinal cortex (ERC) and stratum radiatum lacunosum moleculare (SRLM). When focusing on cases with low levels of TDP-43 pathology, we found strong associations between tau pathology and thickness in the ERC, SRLM and the subiculum/cornu ammonis 1 (CA1) subfields of the hippocampus, consistent with early Braak stages.
  •  
3.
  • Ravikumar, Sadhana, et al. (författare)
  • Improved Segmentation of Deep Sulci in Cortical Gray Matter Using a Deep Learning Framework Incorporating Laplace’s Equation
  • 2023
  • Ingår i: Information Processing in Medical Imaging - 28th International Conference, IPMI 2023, Proceedings. - 1611-3349 .- 0302-9743. - 9783031340475 ; 13939 LNCS, s. 692-704
  • Konferensbidrag (refereegranskat)abstract
    • When developing tools for automated cortical segmentation, the ability to produce topologically correct segmentations is important in order to compute geometrically valid morphometry measures. In practice, accurate cortical segmentation is challenged by image artifacts and the highly convoluted anatomy of the cortex itself. To address this, we propose a novel deep learning-based cortical segmentation method in which prior knowledge about the geometry of the cortex is incorporated into the network during the training process. We design a loss function which uses the theory of Laplace’s equation applied to the cortex to locally penalize unresolved boundaries between tightly folded sulci. Using an ex vivo MRI dataset of human medial temporal lobe specimens, we demonstrate that our approach outperforms baseline segmentation networks, both quantitatively and qualitatively.
  •  
4.
  • Ravikumar, Sadhana, et al. (författare)
  • Postmortem imaging reveals patterns of medial temporal lobe vulnerability to tau pathology in Alzheimer’s disease
  • 2024
  • Ingår i: Nature Communications. - 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Our current understanding of the spread and neurodegenerative effects of tau neurofibrillary tangles (NFTs) within the medial temporal lobe (MTL) during the early stages of Alzheimer’s Disease (AD) is limited by the presence of confounding non-AD pathologies and the two-dimensional (2-D) nature of conventional histology studies. Here, we combine ex vivo MRI and serial histological imaging from 25 human MTL specimens to present a detailed, 3-D characterization of quantitative NFT burden measures in the space of a high-resolution, ex vivo atlas with cytoarchitecturally-defined subregion labels, that can be used to inform future in vivo neuroimaging studies. Average maps show a clear anterior to poster gradient in NFT distribution and a precise, spatial pattern with highest levels of NFTs found not just within the transentorhinal region but also the cornu ammonis (CA1) subfield. Additionally, we identify granular MTL regions where measures of neurodegeneration are likely to be linked to NFTs specifically, and thus potentially more sensitive as early AD biomarkers.
  •  
5.
  • Ravikumar, Sadhana, et al. (författare)
  • Unfolding the Medial Temporal Lobe Cortex to Characterize Neurodegeneration Due to Alzheimer’s Disease Pathology Using Ex vivo Imaging
  • 2021
  • Ingår i: Machine Learning in Clinical Neuroimaging - 4th International Workshop, MLCN 2021, Held in Conjunction with MICCAI 2021, Proceedings. - Cham : Springer International Publishing. - 0302-9743 .- 1611-3349. - 9783030875855 ; 13001 LNCS, s. 3-12
  • Konferensbidrag (refereegranskat)abstract
    • Neurofibrillary tangle (NFT) pathology in the medial temporal lobe (MTL) is closely linked to neurodegeneration, and is the early pathological change associated with Alzheimer’s Disease (AD). In this work, we investigate the relationship between MTL morphometry features derived from high-resolution ex vivo imaging and histology-based measures of NFT pathology using a topological unfolding framework applied to a dataset of 18 human postmortem MTL specimens. The MTL has a complex 3D topography and exhibits a high degree of inter-subject variability in cortical folding patterns which poses a significant challenge for volumetric registration methods typically used during MRI template construction. By unfolding the MTL cortex, the proposed framework explicitly accounts for the sheet-like geometry of the MTL cortex and provides a two-dimensional reference coordinate space which can be used to implicitly register cortical folding patterns across specimens based on distance along the cortex despite large anatomical variability. Leveraging this framework in a subset of 15 specimens, we characterize the associations between NFTs and morphological features such as cortical thickness and surface curvature and identify regions in the MTL where patterns of atrophy are strongly correlated with NFT pathology.
  •  
6.
  • Roh, Hyung S., et al. (författare)
  • Integrating Color Deconvolution Thresholding and Weakly Supervised Learning for Automated Segmentation of Neurofibrillary Tangle and Neuropil Threads
  • 2023
  • Ingår i: Medical Imaging 2023 : Digital and Computational Pathology - Digital and Computational Pathology. - 1605-7422. - 9781510660472 ; 12471
  • Konferensbidrag (refereegranskat)abstract
    • Abnormally phosphorylated tau proteins are known to be a major indicator of Alzheimer's Disease (AD) with strong association with memory loss and cognitive decline. Automated generation of pixel-wise accurate neurofibrillary tangles (NFTs) and neuropil threads (NTs) segmentation is a challenging task, due to lack of ground truth segmentation data of these abnormal tau pathology. This problem is most prominent in the case of segmenting NTs, where the small threadlike morphology makes pixel-wise labeling a laborious task and unrealistic for large-scale studies. Lack of ground truth data poses a significant limitation for many learning-based methods to generate accurate segmentations of NFTs and NTs. This work presents an automated pipeline for pixel level segmentation of NFTs and NTs that does not rely on ground truth segmentation data. The pipeline is composed of four main steps: (1) color deconvolution is used to separate histopathology images into staining channels (DAB, Hematoxylin, and Eosin), (2) Otsu's thresholding is used on the DAB stain channel to generate pixel level segmentation of abnormal tau proteins staining, (3) a weakly-supervised learning paradigm (WildCat), using only global descriptors of images, is used to generate density maps of potential regions of NFTs and NTs, and (4) density maps and segmentations are then integrated using connected component analysis to localize NFTs and NTs in the detected tau segmentations. Our results show high global classification accuracy for NFTs (Acc:0.96) and NTs (Acc:0.91), and statistically significant distinctions when evaluating the percent area occupied of the detected NTs relative to expert ratings of NTs severity. Qualitative assessment of the NFTs and NTs results showed accurate pixel-level segmentations of the NFTs, while modest performance for NTs.
  •  
7.
  • Sadaghiani, Shokufeh, et al. (författare)
  • Associations of phosphorylated tau pathology with whole-hemisphere ex vivo morphometry in 7 tesla MRI
  • 2023
  • Ingår i: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 19:6, s. 2355-2364
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Neurodegenerative disorders are associated with different pathologies that often co-occur but cannot be measured specifically with in vivo methods. Methods: Thirty-three brain hemispheres from donors with an Alzheimer's disease (AD) spectrum diagnosis underwent T2-weighted magnetic resonance imaging (MRI). Gray matter thickness was paired with histopathology from the closest anatomic region in the contralateral hemisphere. Results: Partial Spearman correlation of phosphorylated tau and cortical thickness with TAR DNA-binding protein 43 (TDP-43) and α-synuclein scores, age, sex, and postmortem interval as covariates showed significant relationships in entorhinal and primary visual cortices, temporal pole, and insular and posterior cingulate gyri. Linear models including Braak stages, TDP-43 and α-synuclein scores, age, sex, and postmortem interval showed significant correlation between Braak stage and thickness in the parahippocampal gyrus, entorhinal cortex, and Broadman area 35. Conclusion: We demonstrated an association of measures of AD pathology with tissue loss in several AD regions despite a limited range of pathology in these cases. Highlights: Neurodegenerative disorders are associated with co-occurring pathologies that cannot be measured specifically with in vivo methods. Identification of the topographic patterns of these pathologies in structural magnetic resonance imaging (MRI) may provide probabilistic biomarkers. We demonstrated the correlation of the specific patterns of tissue loss from ex vivo brain MRI with underlying pathologies detected in postmortem brain hemispheres in patients with Alzheimer's disease (AD) spectrum disorders. The results provide insight into the interpretation of in vivo structural MRI studies in patients with AD spectrum disorders.
  •  
8.
  • Wisse, Laura E.M., et al. (författare)
  • Cross-sectional and longitudinal medial temporal lobe subregional atrophy patterns in semantic variant primary progressive aphasia
  • 2021
  • Ingår i: Neurobiology of Aging. - : Elsevier BV. - 0197-4580. ; 98, s. 231-241
  • Tidskriftsartikel (refereegranskat)abstract
    • T1-magnetic resonance imaging (MRI) studies report early atrophy in the left anterior temporal lobe, especially the perirhinal cortex, in semantic variant primary progressive aphasia (svPPA). Improved segmentation protocols using high-resolution T2-MRI have enabled fine-grained medial temporal lobe (MTL) subregional measurements, which may provide novel information on the atrophy pattern and disease progression in svPPA. We aimed to investigate the MTL subregional atrophy pattern cross-sectionally and longitudinally in patients with svPPA as compared with controls and patients with Alzheimer's disease (AD). MTL subregional volumes were obtained using the Automated Segmentation for Hippocampal Subfields software from high-resolution T2-MRIs in 15 svPPA, 37 AD, and 23 healthy controls. All MTL volumes were corrected for intracranial volume and parahippocampal cortices for slice number. Longitudinal atrophy rates of all subregions were obtained using an unbiased deformation-based morphometry pipeline in 6 svPPA patients, 9 controls, and 12 AD patients. Cross-sectionally, significant volume loss was observed in svPPA compared with controls in the left MTL, right cornu ammonis 1 (CA1), Brodmann area (BA)35, and BA36 (subdivisions of the perirhinal cortex). Compared with AD patients, svPPA patients had significantly smaller left CA1, BA35, and left and right BA36 volumes. Longitudinally, svPPA patients had significantly greater atrophy rates of left and right BA36 than controls but not relative to AD patients. Fine-grained analysis of MTL atrophy patterns provides information about the evolution of atrophy in svPPA. These results indicate that MTL subregional measures might be useful markers to track disease progression or for clinical trials in svPPA.
  •  
9.
  • Wuestefeld, Anika, et al. (författare)
  • Comparison of histological delineations of medial temporal lobe cortices by four independent neuroanatomy laboratories
  • 2023
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The medial temporal lobe (MTL) cortex, located adjacent to the hippocampus, is crucial for memory and prone to the accumulation of certain neuropathologies such as Alzheimer's disease neurofibrillary tau tangles. The MTL cortex is composed of several subregions which differ in their functional and cytoarchitectonic features. As neuroanatomical schools rely on different cytoarchitectonic definitions of these subregions, it is unclear to what extent their delineations of MTL cortex subregions overlap. Here, we provide an overview of cytoarchitectonic definitions of the cortices that make up the parahippocampal gyrus (entorhinal and parahippocampal cortices) and the adjacent Brodmann areas (BA) 35 and 36, as provided by four neuroanatomists from different laboratories, aiming to identify the rationale for overlapping and diverging delineations. Nissl-stained series were acquired from the temporal lobes of three human specimens (two right and one left hemisphere). Slices (50 µm thick) were prepared perpendicular to the long axis of the hippocampus spanning the entire longitudinal extent of the MTL cortex. Four neuroanatomists annotated MTL cortex subregions on digitized (20X resolution) slices with 5 mm spacing. Parcellations, terminology, and border placement were compared among neuroanatomists. Cytoarchitectonic features of each subregion are described in detail. Qualitative analysis of the annotations showed higher agreement in the definitions of the entorhinal cortex and BA35, while definitions of BA36 and the parahippocampal cortex exhibited less overlap among neuroanatomists. The degree of overlap of cytoarchitectonic definitions was partially reflected in the neuroanatomists' agreement on the respective delineations. Lower agreement in annotations was observed in transitional zones between structures where seminal cytoarchitectonic features are expressed more gradually. The results highlight that definitions and parcellations of the MTL cortex differ among neuroanatomical schools and thereby increase understanding of why these differences may arise. This work sets a crucial foundation to further advance anatomically-informed human neuroimaging research on the MTL cortex.
  •  
10.
  • Wuestefeld, Anika, et al. (författare)
  • Comparison of histological delineations of medial temporal lobe cortices by four independent neuroanatomy laboratories
  • Ingår i: Hippocampus. - 1050-9631.
  • Tidskriftsartikel (refereegranskat)abstract
    • The medial temporal lobe (MTL) cortex, located adjacent to the hippocampus, is crucial for memory and prone to the accumulation of certain neuropathologies such as Alzheimer's disease neurofibrillary tau tangles. The MTL cortex is composed of several subregions which differ in their functional and cytoarchitectonic features. As neuroanatomical schools rely on different cytoarchitectonic definitions of these subregions, it is unclear to what extent their delineations of MTL cortex subregions overlap. Here, we provide an overview of cytoarchitectonic definitions of the entorhinal and parahippocampal cortices as well as Brodmann areas (BA) 35 and 36, as provided by four neuroanatomists from different laboratories, aiming to identify the rationale for overlapping and diverging delineations. Nissl-stained series were acquired from the temporal lobes of three human specimens (two right and one left hemisphere). Slices (50 μm thick) were prepared perpendicular to the long axis of the hippocampus spanning the entire longitudinal extent of the MTL cortex. Four neuroanatomists annotated MTL cortex subregions on digitized slices spaced 5 mm apart (pixel size 0.4 μm at 20× magnification). Parcellations, terminology, and border placement were compared among neuroanatomists. Cytoarchitectonic features of each subregion are described in detail. Qualitative analysis of the annotations showed higher agreement in the definitions of the entorhinal cortex and BA35, while the definitions of BA36 and the parahippocampal cortex exhibited less overlap among neuroanatomists. The degree of overlap of cytoarchitectonic definitions was partially reflected in the neuroanatomists' agreement on the respective delineations. Lower agreement in annotations was observed in transitional zones between structures where seminal cytoarchitectonic features are expressed less saliently. The results highlight that definitions and parcellations of the MTL cortex differ among neuroanatomical schools and thereby increase understanding of why these differences may arise. This work sets a crucial foundation to further advance anatomically-informed neuroimaging research on the human MTL cortex.
  •  
11.
  • Xie, Long, et al. (författare)
  • Baseline structural MRI and plasma biomarkers predict longitudinal structural atrophy and cognitive decline in early Alzheimer’s disease
  • 2023
  • Ingår i: Alzheimer's Research and Therapy. - 1758-9193. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Crucial to the success of clinical trials targeting early Alzheimer’s disease (AD) is recruiting participants who are more likely to progress over the course of the trials. We hypothesize that a combination of plasma and structural MRI biomarkers, which are less costly and non-invasive, is predictive of longitudinal progression measured by atrophy and cognitive decline in early AD, providing a practical alternative to PET or cerebrospinal fluid biomarkers. Methods: Longitudinal T1-weighted MRI, cognitive (memory-related test scores and clinical dementia rating scale), and plasma measurements of 245 cognitively normal (CN) and 361 mild cognitive impairment (MCI) patients from ADNI were included. Subjects were further divided into β-amyloid positive/negative (Aβ+/Aβ−)] subgroups. Baseline plasma (p-tau181 and neurofilament light chain) and MRI-based structural medial temporal lobe subregional measurements and their association with longitudinal measures of atrophy and cognitive decline were tested using stepwise linear mixed effect modeling in CN and MCI, as well as separately in the Aβ+/Aβ− subgroups. Receiver operating characteristic (ROC) analyses were performed to investigate the discriminative power of each model in separating fast and slow progressors (first and last terciles) of each longitudinal measurement. Results: A total of 245 CN (35.0% Aβ+) and 361 MCI (53.2% Aβ+) participants were included. In the CN and MCI groups, both baseline plasma and structural MRI biomarkers were included in most models. These relationships were maintained when limited to the Aβ+ and Aβ− subgroups, including Aβ− CN (normal aging). ROC analyses demonstrated reliable discriminative power in identifying fast from slow progressors in MCI [area under the curve (AUC): 0.78–0.93] and more modestly in CN (0.65–0.73). Conclusions: The present data support the notion that plasma and MRI biomarkers, which are relatively easy to obtain, provide a prediction for the rate of future cognitive and neurodegenerative progression that may be particularly useful in clinical trial stratification and prognosis. Additionally, the effect in Aβ− CN indicates the potential use of these biomarkers in predicting a normal age-related decline.
  •  
12.
  • Xie, Long, et al. (författare)
  • Longitudinal atrophy in early Braak regions in preclinical Alzheimer's disease
  • 2020
  • Ingår i: Human Brain Mapping. - : Wiley. - 1065-9471 .- 1097-0193. ; 41:16, s. 4704-4717
  • Tidskriftsartikel (refereegranskat)abstract
    • A major focus of Alzheimer's disease (AD) research has been finding sensitive outcome measures to disease progression in preclinical AD, as intervention studies begin to target this population. We hypothesize that tailored measures of longitudinal change of the medial temporal lobe (MTL) subregions (the sites of earliest cortical tangle pathology) are more sensitive to disease progression in preclinical AD compared to standard cognitive and plasma NfL measures. Longitudinal T1-weighted MRI of 337 participants were included, divided into amyloid-β negative (Aβ−) controls, cerebral spinal fluid p-tau positive (T+) and negative (T−) preclinical AD (Aβ+ controls), and early prodromal AD. Anterior/posterior hippocampus, entorhinal cortex, Brodmann areas (BA) 35 and 36, and parahippocampal cortex were segmented in baseline MRI using a novel pipeline. Unbiased change rates of subregions were estimated using MRI scans within a 2-year-follow-up period. Experimental results showed that longitudinal atrophy rates of all MTL subregions were significantly higher for T+ preclinical AD and early prodromal AD than controls, but not for T− preclinical AD. Posterior hippocampus and BA35 demonstrated the largest group differences among hippocampus and MTL cortex respectively. None of the cross-sectional MTL measures, longitudinal cognitive measures (PACC, ADAS-Cog) and cross-sectional or longitudinal plasma NfL reached significance in preclinical AD. In conclusion, longitudinal atrophy measurements reflect active neurodegeneration and thus are more directly linked to active disease progression than cross-sectional measurements. Moreover, accelerated atrophy in preclinical AD seems to occur only in the presence of concomitant tau pathology. The proposed longitudinal measurements may serve as efficient outcome measures in clinical trials.
  •  
13.
  • Yushkevich, Paul A., et al. (författare)
  • Three-dimensional mapping of neurofibrillary tangle burden in the human medial temporal lobe
  • 2021
  • Ingår i: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 144:9, s. 2784-2797
  • Tidskriftsartikel (refereegranskat)abstract
    • Tau protein neurofibrillary tangles are closely linked to neuronal/synaptic loss and cognitive decline in Alzheimer's disease and related dementias. Our knowledge of the pattern of neurofibrillary tangle progression in the human brain, critical to the development of imaging biomarkers and interpretation of in vivo imaging studies in Alzheimer's disease, is based on conventional two-dimensional histology studies that only sample the brain sparsely. To address this limitation, ex vivo MRI and dense serial histological imaging in 18 human medial temporal lobe specimens (age 75.3 ± 11.4 years, range 45 to 93) were used to construct three-dimensional quantitative maps of neurofibrillary tangle burden in the medial temporal lobe at individual and group levels. Group-level maps were obtained in the space of an in vivo brain template, and neurofibrillary tangles were measured in specific anatomical regions defined in this template. Three-dimensional maps of neurofibrillary tangle burden revealed significant variation along the anterior-posterior axis. While early neurofibrillary tangle pathology is thought to be confined to the transentorhinal region, we found similar levels of burden in this region and other medial temporal lobe subregions, including amygdala, temporopolar cortex, and subiculum/cornu ammonis 1 hippocampal subfields. Overall, the three-dimensional maps of neurofibrillary tangle burden presented here provide more complete information about the distribution of this neurodegenerative pathology in the region of the cortex where it first emerges in Alzheimer's disease, and may help inform the field about the patterns of pathology spread, as well as support development and validation of neuroimaging biomarkers.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-13 av 13
Typ av publikation
tidskriftsartikel (9)
konferensbidrag (3)
annan publikation (1)
Typ av innehåll
refereegranskat (12)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Ittyerah, Ranjit (13)
Wisse, Laura E.M. (12)
Yushkevich, Paul A. (10)
Wolk, David A (10)
Irwin, David J (9)
Schuck, Theresa (9)
visa fler...
Das, Sandhitsu R. (9)
Insausti, Ricardo (9)
Xie, Long (8)
Lee, Edward B (8)
Lim, Sydney (8)
Grossman, Murray (7)
Robinson, John L. (7)
De La Rosa-Prieto, C ... (7)
Artacho-Pérula, Emil ... (7)
Trojanowski, John Q (6)
de Flores, Robin (6)
Ravikumar, Sadhana (6)
Tisdall, M. Dylan (6)
Prabhakaran, Karthik (6)
de Onzoño Martin, Ma ... (6)
Bedard, Madigan L. (5)
Mizsei, Gabor (5)
del Mar Arroyo Jimén ... (5)
Parada, Marta Córcol ... (5)
Detre, John A (4)
Muñoz, Monica (4)
Romero, Francisco Ja ... (4)
del Pilar Marcos Rab ... (4)
Sánchez, Sandra Ceba ... (4)
González, José Carlo ... (4)
Trotman, Winifred (4)
Berron, David (3)
Ding, Song Lin (3)
Cebada-Sánchez, Sand ... (3)
Yushkevich, Paul (3)
Chung, Eunice (3)
López, Mónica Muñoz (3)
Wang, Lei (2)
Adams, Jenna N. (2)
Baumeister, Hannah (2)
Wuestefeld, Anika (2)
Pickup, Stephen (2)
Liu, Weixia (2)
Dong, Mengjin (2)
Olsen, Rosanna K. (2)
Augustinack, Jean C (2)
Delgado-González, Jo ... (2)
Daugherty, Ana M. (2)
Khandelwal, Pulkit (2)
visa färre...
Lärosäte
Lunds universitet (13)
Språk
Engelska (13)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (10)
Teknik (5)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy