SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ivarsson Maria 1977 ) "

Sökning: WFRF:(Ivarsson Maria 1977 )

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Ivarsson, Maria, 1977- (författare)
  • Fuel Optimal Powertrain Control for Heavy Trucks Utilizing Look Ahead
  • 2009
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The road topography in highways affects the powertrain control of a heavy truck substantially since the engine power is low in relation to the vehicle weight. In large road gradients constant speed is not possible to keep, which would have been beneficial otherwise, and in some uphills shifting gears becomes inevitable. If information about the road ahead, i.e. look ahead information, is available, then the powertrain can be controlled in a more fuel efficient way. Trial runs are performed, where the velocity trajectory that minimizes energy consumption, is calculated and communicated in real time as set points to the conventional cruise control. This look ahead control gives significant fuel consumption reductions compared to a standard cruise control, while keeping to the same mean speed. The results are the inspiration to further studies in how powertrain control can benefit from look ahead information. An engine with a non-linear fuel map is studied to understand its impact on fuel optimal speed. It is shown that for a significant fuel map non-linearity, quantified by a threshold value, constant speed in small road gradients is no longer optimal. Further, an automated manual transmission (AMT) optimal gear control is studied. It is shown that the reduced propulsion of a typical AMT gear-shifting process must be considered when choosing when to shift gears. Thus, additional reductions of fuel consumption are obtained with a look ahead control based on knowledge of engine and transmission characteristics.
  •  
3.
  • Ivarsson, Maria, 1977-, et al. (författare)
  • Impacts of AMT Gear-Shifting on Fuel Optimal Look Ahead Control
  • 2009
  • Ingår i: SAE Technical Paper Series. - Linköping : Linköping University Electronic Press. - 0148-7191.
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • A fuel optimal gear shift control has been studied, when look ahead information is available, and the impact of the automated manual transmission (AMT) gear-shifting process is analayzed. For a standard discrete heavy truck transmission, answers are found on when to shift gears, prior to or when in an uphill slope. The gear-shifting process of a standard AMT is modeled, not considering the comfort details, in order to capture the fuel and time aspects of the gear shift. A numerical optimization is performed by dynamic programming, minimizing fuel consumption and time by controlling fuel injection and gear. Since a standard AMT does not have look ahead information, it sometimes gears down unnecessarily and thus gives a significantly higher fuel consumption compared to the optimal control. However, if gearing down is inevitable, the AMT gear-shifting strategy, based on engine thresholds, is a well-functioning gear control so that the optimal control only gives marginal additional savings. To attain the possible fuel reductions it is shown that the reduced propulsion of an AMT gear-shifting process, and the resulting vehicle retardation, must be considered. The point of shifting gears must be chosen to ensure an adequate engine speed in order to get a sufficient engine power after the gear shift, even as the truck is decelerated during gear shift.
  •  
4.
  • Ivarsson, Maria, 1977-, et al. (författare)
  • Look Ahead Control - Consequences of a Non-Linear Fuel Map on Truck Fuel Consumption
  • 2008
  • Ingår i: The 17th IFAC World Congress.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Consequences of non-linearities in specific fuel consumption, sfc, of a heavy truck combustion engine are studied with focus on so small road gradients that constant speed is optimal if the engine torque has an affine relation to fueling. A quasi-static analysis gives valuable insights into the intrinsic properties of minimization of fuel consumption. Two objective functions are shown to give different optimal velocity trajectories on a constant road gradient, when the non-linearity in sfc is significant, a notation which is quantified. For a significant non-linearity, when a constraint is set to keep a final time, switching between two characteristic speeds is optimal. Alternatively, if consumed time, in addition to fuel consumption, is part of the objective function, then keeping to one constant speed is optimal also for significant non-linearities. However, the different optimal solutions still show similarities, since for a certain significant non-linearity a specific speed range determined by the characteristic velocities is shown to be unobtainable for both optimality criteria. Similar results are obtained for a full dynamic model including a realistic fuel map and other realistic constraints.
  •  
5.
  • Ivarsson, Maria, 1977-, et al. (författare)
  • Look-ahead control – consequences of a non-linear fuel map on truck fuel consumption
  • 2009
  • Ingår i: Proceedings of the Institution of mechanical engineers. Part D, journal of automobile engineering. - London : Professional Engineering Publishing. - 0954-4070 .- 2041-2991. ; 223:10, s. 1223-1238
  • Tidskriftsartikel (refereegranskat)abstract
    • Consequences of non-linearities in specific fuel consumption (SFC) of a heavy truck combustion engine are studied with focus on such small road gradients that a constant speed is optimal if the engine torque has an affine relation to fuelling. A quasi-static analysis gives valuable insights into the intrinsic properties of minimization of fuel consumption. Two objective functions are shown to give different optimal velocity trajectories on a constant road gradient, when the non-linearity in SFC is significant, a notation which is quantified. For a significant non-linearity, when a constraint is set to keep a final time, switching between twocharacteristic speeds is optimal. Alternatively, if consumed time, in addition to fuel consumption, is part of the objective function, then keeping to one constant speed is optimal also for significant non-linearities. However, the different optimal solutions still show similarities, since for a certain significant non-linearity a specific speed range determined by the characteristic velocities is shown to be unobtainable for both optimality criteria. Similarresults are obtained for a full dynamic model including a realistic fuel map and other realistic constraints.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy