SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Iyengar P) "

Sökning: WFRF:(Iyengar P)

  • Resultat 1-26 av 26
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  • Andrews, B. J., et al. (författare)
  • Quantitative human cell encyclopedia
  • 2016
  • Ingår i: Science Signaling. - : American Association for the Advancement of Science (AAAS). - 1945-0877 .- 1937-9145. ; 9:443
  • Tidskriftsartikel (refereegranskat)abstract
    • Scientists gathered to discuss the necessity, feasibility, and challenges of generating a quantitative catalog of the components in human cells that is essential for our understanding of human physiology in health and disease and to support future breakthroughs in treating diseases. This report summarizes the discussion that emerged at the Human Quantitative Dynamics Workshop held in Bethesda, MD, USA, in December 2015.
  •  
12.
  • Burnum-Johnson, Kristin E., et al. (författare)
  • New Views of Old Proteins : Clarifying the Enigmatic Proteome
  • 2022
  • Ingår i: Molecular & Cellular Proteomics. - : Elsevier BV. - 1535-9476 .- 1535-9484. ; 21:7
  • Tidskriftsartikel (refereegranskat)abstract
    • All human diseases involve proteins, yet our current tools to characterize and quantify them are limited. To better elucidate proteins across space, time, and molecular composition, we provide a >10 years of projection for technologies to meet the challenges that protein biology presents. With a broad perspective, we discuss grand opportunities to transition the science of proteomics into a more propulsive enterprise. Extrapolating recent trends, we describe a next generation of approaches to define, quantify, and visualize the multiple dimensions of the proteome, thereby transforming our understanding and interactions with human disease in the coming decade.
  •  
13.
  • Gaziano, Liam, et al. (författare)
  • Actionable druggable genome-wide Mendelian randomization identifies repurposing opportunities for COVID-19
  • 2021
  • Ingår i: Nature Medicine. - : Springer Nature. - 1078-8956 .- 1546-170X. ; 27:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Large-scale Mendelian randomization and colocalization analyses using gene expression and soluble protein data for 1,263 actionable druggable genes, which encode protein targets for approved drugs or drugs in clinical development, identify IFNAR2 and ACE2 as the most promising therapeutic targets for early management of COVID-19. Drug repurposing provides a rapid approach to meet the urgent need for therapeutics to address COVID-19. To identify therapeutic targets relevant to COVID-19, we conducted Mendelian randomization analyses, deriving genetic instruments based on transcriptomic and proteomic data for 1,263 actionable proteins that are targeted by approved drugs or in clinical phase of drug development. Using summary statistics from the Host Genetics Initiative and the Million Veteran Program, we studied 7,554 patients hospitalized with COVID-19 and >1 million controls. We found significant Mendelian randomization results for three proteins (ACE2, P = 1.6 x 10(-6); IFNAR2, P = 9.8 x 10(-11) and IL-10RB, P = 2.3 x 10(-14)) using cis-expression quantitative trait loci genetic instruments that also had strong evidence for colocalization with COVID-19 hospitalization. To disentangle the shared expression quantitative trait loci signal for IL10RB and IFNAR2, we conducted phenome-wide association scans and pathway enrichment analysis, which suggested that IFNAR2 is more likely to play a role in COVID-19 hospitalization. Our findings prioritize trials of drugs targeting IFNAR2 and ACE2 for early management of COVID-19.
  •  
14.
  •  
15.
  • Iyengar, K, et al. (författare)
  • Huwa Rog, Parhej, and Desi Dawai: Women's Perceptions of Postpartum Maternal Morbidity and Care in Rajasthan, India
  • 2016
  • Ingår i: Qualitative health research. - : SAGE Publications. - 1049-7323 .- 1552-7557. ; 26:5, s. 659-671
  • Tidskriftsartikel (refereegranskat)abstract
    • Although more maternal deaths occur in the postpartum period, this period receives far less attention from the program managers. To understand how the women and their families perceive postpartum health problems, the culturally derived restrictions, and precautions controlling diets and behavior patterns, we conducted a mixed-method study in Rajasthan, India. The study methods included free listing of maternal morbidity conditions, interviews with 81 recently delivered women, case interviews with eight cases of huwa rog (postpartum illness), and interviews with nine key informants. The study showed that huwa rog refers to a broad category of serious postpartum illness, thought to affect women a few weeks to several months after delivery. Prevention of the illness involves a system of precautions referred to as parhej, which includes a distinctive set of “medicinal dietary items” referred to as desi dawai, or “country medicine,” and restrictions about mobility and work patterns of a postpartum woman. This cultural framework around the concept of huwa rog and peoples’ beliefs about it are of central importance for planning postpartum health interventions, including place of contact and communication messages.
  •  
16.
  •  
17.
  • Bonfiglio, Silvia, et al. (författare)
  • BTK and PLCG2 remain unmutated in one-third of patients with CLL relapsing on ibrutinib
  • 2023
  • Ingår i: Blood Advances. - : American Society of Hematology. - 2473-9529 .- 2473-9537. ; 7:12, s. 2794-2806
  • Tidskriftsartikel (refereegranskat)abstract
    • Patients with chronic lymphocytic leukemia (CLL) progressing on ibrutinib constitute an unmet need. Though Bruton tyrosine kinase (BTK) and PLCG2 mutations are associated with ibrutinib resistance, their frequency and relevance to progression are not fully understood. In this multicenter retrospective observational study, we analyzed 98 patients with CLL on ibrutinib (49 relapsing after an initial response and 49 still responding after ≥1 year of continuous treatment) using a next-generation sequencing (NGS) panel (1% sensitivity) comprising 13 CLL-relevant genes including BTK and PLCG2. BTK hotspot mutations were validated by droplet digital polymerase chain reaction (ddPCR) (0.1% sensitivity). By integrating NGS and ddPCR results, 32 of 49 relapsing cases (65%) carried at least 1 hotspot BTK and/or PLCG2 mutation(s); in 6 of 32, BTK mutations were only detected by ddPCR (variant allele frequency [VAF] 0.1% to 1.2%). BTK/PLCG2 mutations were also identified in 6 of 49 responding patients (12%; 5/6 VAF <10%), of whom 2 progressed later. Among the relapsing patients, the BTK-mutated (BTKmut) group was enriched for EGR2 mutations, whereas BTK-wildtype (BTKwt) cases more frequently displayed BIRC3 and NFKBIE mutations. Using an extended capture-based panel, only BRAF and IKZF3 mutations showed a predominance in relapsing cases, who were enriched for del(8p) (n = 11; 3 BTKwt). Finally, no difference in TP53 mutation burden was observed between BTKmut and BTKwt relapsing cases, and ibrutinib treatment did not favor selection of TP53-aberrant clones. In conclusion, we show that BTK/PLCG2 mutations were absent in a substantial fraction (35%) of a real-world cohort failing ibrutinib, and propose additional mechanisms contributing to resistance.
  •  
18.
  •  
19.
  • de Erausquin, Gabriel A, et al. (författare)
  • Chronic neuropsychiatric sequelae of SARS-CoV-2: Protocol and methods from the Alzheimer's Association Global Consortium.
  • 2022
  • Ingår i: Alzheimer's & dementia (New York, N. Y.). - : Wiley. - 2352-8737. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Coronavirus disease 2019 (COVID-19) has caused >3.5 million deaths worldwide and affected >160 million people. At least twice as many have been infected but remained asymptomatic or minimally symptomatic. COVID-19 includes central nervous system manifestations mediated by inflammation and cerebrovascular, anoxic, and/or viral neurotoxicity mechanisms. More than one third of patients with COVID-19 develop neurologic problems during the acute phase of the illness, including loss of sense of smell or taste, seizures, and stroke. Damage or functional changes to the brain may result in chronic sequelae. The risk of incident cognitive and neuropsychiatric complications appears independent from the severity of the original pulmonary illness. It behooves the scientific and medical community to attempt to understand the molecular and/or systemic factors linking COVID-19 to neurologic illness, both short and long term.This article describes what is known so far in terms of links among COVID-19, the brain, neurological symptoms, and Alzheimer's disease (AD) and related dementias. We focus on risk factors and possible molecular, inflammatory, and viral mechanisms underlying neurological injury. We also provide a comprehensive description of the Alzheimer's Association Consortium on Chronic Neuropsychiatric Sequelae of SARS-CoV-2 infection (CNS SC2) harmonized methodology to address these questions using a worldwide network of researchers and institutions.Successful harmonization of designs and methods was achieved through a consensus process initially fragmented by specific interest groups (epidemiology, clinical assessments, cognitive evaluation, biomarkers, and neuroimaging). Conclusions from subcommittees were presented to the whole group and discussed extensively. Presently data collection is ongoing at 19 sites in 12 countries representing Asia, Africa, the Americas, and Europe.The Alzheimer's Association Global Consortium harmonized methodology is proposed as a model to study long-term neurocognitive sequelae of SARS-CoV-2 infection.The following review describes what is known so far in terms of molecular and epidemiological links among COVID-19, the brain, neurological symptoms, and AD and related dementias (ADRD)The primary objective of this large-scale collaboration is to clarify the pathogenesis of ADRD and to advance our understanding of the impact of a neurotropic virus on the long-term risk of cognitive decline and other CNS sequelae. No available evidence supports the notion that cognitive impairment after SARS-CoV-2 infection is a form of dementia (ADRD or otherwise). The longitudinal methodologies espoused by the consortium are intended to provide data to answer this question as clearly as possible controlling for possible confounders. Our specific hypothesis is that SARS-CoV-2 triggers ADRD-like pathology following the extended olfactory cortical network (EOCN) in older individuals with specific genetic susceptibility.The proposed harmonization strategies and flexible study designs offer the possibility to include large samples of under-represented racial and ethnic groups, creating a rich set of harmonized cohorts for future studies of the pathophysiology, determinants, long-term consequences, and trends in cognitive aging, ADRD, and vascular disease.We provide a framework for current and future studies to be carried out within the Consortium. and offers a "green paper" to the research community with a very broad, global base of support, on tools suitable for low- and middle-income countries aimed to compare and combine future longitudinal data on the topic.The Consortium proposes a combination of design and statistical methods as a means of approaching causal inference of the COVID-19 neuropsychiatric sequelae. We expect that deep phenotyping of neuropsychiatric sequelae may provide a series of candidate syndromes with phenomenological and biological characterization that can be further explored. By generating high-quality harmonized data across sites we aim to capture both descriptive and, where possible, causal associations.
  •  
20.
  • Fernandez-Luque, Luis, et al. (författare)
  • Evidence-Based Health Informatics as the Foundation for the COVID-19 Response : A Joint Call for Action
  • 2022
  • Ingår i: Methods of Information in Medicine. - : Thieme Verlag. - 0026-1270 .- 2511-705X. ; 59:6, s. 183-192
  • Tidskriftsartikel (refereegranskat)abstract
    • Background As a major public health crisis, the novel coronavirus disease 2019 (COVID-19) pandemic demonstrates the urgent need for safe, effective, and evidence-based implementations of digital health. The urgency stems from the frequent tendency to focus attention on seemingly high promising digital health interventions despite being poorly validated in times of crisis. Aim In this paper, we describe a joint call for action to use and leverage evidence-based health informatics as the foundation for the COVID-19 response and public health interventions. Tangible examples are provided for how the working groups and special interest groups of the International Medical Informatics Association (IMIA) are helping to build an evidence-based response to this crisis. Methods Leaders of working and special interest groups of the IMIA, a total of 26 groups, were contacted via e-mail to provide a summary of the scientific-based efforts taken to combat COVID-19 pandemic and participate in the discussion toward the creation of this manuscript. A total of 13 groups participated in this manuscript. Results Various efforts were exerted by members of IMIA including (1) developing evidence-based guidelines for the design and deployment of digital health solutions during COVID-19; (2) surveying clinical informaticians internationally about key digital solutions deployed to combat COVID-19 and the challenges faced when implementing and using them; and (3) offering necessary resources for clinicians about the use of digital tools in clinical practice, education, and research during COVID-19. Discussion Rigor and evidence need to be taken into consideration when designing, implementing, and using digital tools to combat COVID-19 to avoid delays and unforeseen negative consequences. It is paramount to employ a multidisciplinary approach for the development and implementation of digital health tools that have been rapidly deployed in response to the pandemic bearing in mind human factors, ethics, data privacy, and the diversity of context at the local, national, and international levels. The training and capacity building of front-line workers is crucial and must be linked to a clear strategy for evaluation of ongoing experiences.
  •  
21.
  •  
22.
  •  
23.
  • Habainy, J., et al. (författare)
  • Study of heavy ion beam induced damage in tungsten for high power target applications
  • 2019
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section B. - : Elsevier BV. - 0168-583X .- 1872-9584. ; 439, s. 7-16
  • Tidskriftsartikel (refereegranskat)abstract
    • The spallation material at ESS is pure tungsten, which is cooled by gaseous helium flow. To study the behaviour of tungsten under dynamic beam conditions at ESS, pure tungsten specimens have been irradiated at the M3-beamline of the UNILAC facility at GSI Helmholtz Centre for Heavy Ion Research. Tungsten specimens of two thicknesses, 26 μm and 3 mm, were exposed to pulsed uranium and gold ion beams for fluences up to 7.5 · 1013 ions·cm−2 at 4.8 MeV/nucleon. Nanoindentation tests were performed on the cross section of the irradiated 3 mm sample, and microhardness was measured on the top surface. The measured data are compared with the calculated damage values, and a correlation between the radiation induced damage and the observed mechanical property is presented. Thermal diffusivities of foil samples irradiated up to four different fluences were measured with a Laser Flash Apparatus (LFA). The observed changes in the mechanical and thermal properties of irradiated tungsten were used to estimate the changes of operational temperature and mechanical stresses in the ESS target material with the progress of radiation damage, using coupled thermal and mechanical simulations. From the pulsed beam induced dynamic oscillations of thin tungsten specimens, information on fatigue properties of tungsten under irradiation was drawn. In addition to pure tungsten, oxidised tungsten samples were irradiated. This is to investigate the stability of the adhesive oxide layer under pulsed beam conditions, which would be formed due to oxygen impurities in the helium cooling loop. The irradiated oxide scale was examined using Auger Electron Spectroscopy (AES) and Scanning Electron Microscopy (SEM). 
  •  
24.
  •  
25.
  •  
26.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-26 av 26

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy