SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Jönsson Göran B.) "

Search: WFRF:(Jönsson Göran B.)

  • Result 1-50 of 102
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Haq, Rizwan, et al. (author)
  • BCL2A1 is a lineage-specific antiapoptotic melanoma oncogene that confers resistance to BRAF inhibition
  • 2013
  • In: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 110:11, s. 4321-4326
  • Journal article (peer-reviewed)abstract
    • Although targeting oncogenic mutations in the BRAF serine/threonine kinase with small molecule inhibitors can lead to significant clinical responses in melanoma, it fails to eradicate tumors in nearly all patients. Successful therapy will be aided by identification of intrinsic mechanisms that protect tumor cells from death. Here, we used a bioinformatics approach to identify drug-able, "driver" oncogenes restricted to tumor versus normal tissues. Applying this method to 88 short-term melanoma cell cultures, we show that the antiapoptotic BCL2 family member BCL2A1 is recurrently amplified in similar to 30% of melanomas and is necessary for melanoma growth. BCL2A1 overexpression also promotes melanomagenesis of BRAF-immortalized melanocytes. We find that high-level expression of BCL2A1 is restricted to melanoma due to direct transcriptional control by the melanoma oncogene MITF. Although BRAF inhibitors lead to cell cycle arrest and modest apoptosis, we find that apoptosis is significantly enhanced by suppression of BCL2A1 in melanomas with BCL2A1 or MITF amplification. Moreover, we find that BCL2A1 expression is associated with poorer clinical responses to BRAF pathway inhibitors in melanoma patients. Cotreatment of melanomas with BRAF inhibitors and obatoclax, an inhibitor of BCL2A1 and other BCL2 family members, overcomes intrinsic resistance to BRAF inhibitors in BCL2A1-amplified cells in vitro and in vivo. These studies identify MITF-BCL2A1 as a lineage-specific oncogenic pathway in melanoma and underscore its role for improved response to BRAF-directed therapy.
  •  
2.
  •  
3.
  • Jönsson, Jenny-Maria, et al. (author)
  • Distinct gene expression profiles in ovarian cancer linked to Lynch syndrome.
  • 2014
  • In: Familial Cancer. - : Springer Science and Business Media LLC. - 1389-9600 .- 1573-7292. ; 13:4, s. 537-545
  • Journal article (peer-reviewed)abstract
    • Ovarian cancer linked to Lynch syndrome represents a rare subset that typically presents at young age as early-stage tumors with an overrepresentation of endometrioid and clear cell histologies. We investigated the molecular profiles of Lynch syndrome-associated and sporadic ovarian cancer with the aim to identify key discriminators and central tumorigenic mechanisms in hereditary ovarian cancer. Global gene expression profiling using whole-genome c-DNA-mediated Annealing, Selection, extension, and Ligation was applied to 48 histopathologically matched Lynch syndrome-associated and sporadic ovarian cancers. Lynch syndrome-associated and sporadic ovarian cancers differed by 349 significantly deregulated genes, including PTPRH, BIRC3, SHH and TNFRSF6B. The genes involved were predominantly linked to cell growth, proliferation, and cell-to-cell signaling and interaction. When stratified for histologic subtype, hierarchical clustering confirmed distinct differences related to heredity in the endometrioid and serous subtypes. Furthermore, separate clustering was achieved in an independent, publically available data set. The distinct genetic signatures in Lynch syndrome-associated and sporadic ovarian cancers point to alternative preferred tumorigenic routes and suggest that genetic discriminators may be relevant for molecular diagnostics and targeted therapeutics.
  •  
4.
  • Karlsson, Anna K, et al. (author)
  • Genome-wide DNA methylation analysis of lung carcinoma reveals one neuroendocrine and four adenocarcinoma epitypes associated with patient outcome.
  • 2014
  • In: Clinical Cancer Research. - 1078-0432. ; 20:23, s. 6127-6140
  • Journal article (peer-reviewed)abstract
    • Purpose: Lung cancer is the worldwide leading cause of death from cancer. DNA methylation in gene promoter regions is a major mechanism of gene expression regulation that may promote tumorigenesis. However, whether clinically relevant subgroups based on DNA methylation patterns exist in lung cancer remains unclear. Experimental Design: Whole-genome DNA methylation analysis using 450K Illumina BeadArrays was performed on 12 normal lung tissues and 124 tumors including 83 adenocarcinomas, 23 squamous cell carcinomas (SqCC), one adenosquamous cancer, five large cell carcinomas, nine large cell neuroendocrine carcinomas (LCNEC), and three small cell carcinomas (SCLC). Unsupervised bootstrap clustering was performed to identify DNA methylation subgroups, which were validated in 695 adenocarcinomas and 122 SqCCs. Subgroups were characterized by clinicopathological factors, whole-exome sequencing data, and gene expression profiles. Results: Unsupervised analysis identified five DNA methylation subgroups (epitypes). One epitype was distinctly associated with neuroendocrine tumors (LCNEC and SCLC). For adenocarcinoma, remaining four epitypes were associated with unsupervised and supervised gene expression phenotypes, and differences in molecular features including global hypomethylation, promoter hypermethylation, genomic instability, expression of proliferation-associated genes, and mutations in KRAS, TP53, KEAP1, SMARCA4, and STK11. Furthermore, these epitypes were associated with clinicopathological features such as smoking history, and patient outcome. Conclusions: Our findings highlight one neuroendocrine and four adenocarcinoma epitypes associated with molecular and clinicopathological characteristics, including patient outcome. This study highlights the possibility to further subgroup lung cancer, and more specifically adenocarcinomas, based on epigenetic/molecular classification that could lead to more accurate tumor classification, prognostication, and tailored patient therapy.
  •  
5.
  • Karlsson, Anna K, et al. (author)
  • Mutational and gene fusion analyses of primary large cell and large cell neuroendocrine lung cancer.
  • 2015
  • In: Oncotarget. - 1949-2553. ; 6:26, s. 22028-22037
  • Journal article (peer-reviewed)abstract
    • Large cell carcinoma with or without neuroendocrine features (LCNEC and LC, respectively) constitutes 3-9% of non-small cell lung cancer but is poorly characterized at the molecular level. Herein we analyzed 41 LC and 32 LCNEC (including 15 previously reported cases) tumors using massive parallel sequencing for mutations in 26 cancer-related genes and gene fusions in ALK, RET, and ROS1. LC patients were additionally subdivided into three immunohistochemistry groups based on positive expression of TTF-1/Napsin A (adenocarcinoma-like, n = 24; 59%), CK5/P40 (squamous-like, n = 5; 12%), or no marker expression (marker-negative, n = 12; 29%). Most common alterations were TP53 (83%), KRAS (22%), MET (12%) mutations in LCs, and TP53 (88%), STK11 (16%), and PTEN (13%) mutations in LCNECs. In general, LCs showed more oncogene mutations compared to LCNECs. Immunomarker stratification of LC revealed oncogene mutations in 63% of adenocarcinoma-like cases, but only in 17% of marker-negative cases. Moreover, marker-negative LCs were associated with inferior overall survival compared with adenocarcinoma-like tumors (p = 0.007). No ALK, RET or ROS1 fusions were detected in LCs or LCNECs. Together, our molecular analyses support that LC and LCNEC tumors follow different tumorigenic paths and that LC may be stratified into molecular subgroups with potential implications for diagnosis, prognostics, and therapy decisions.
  •  
6.
  • Staaf, Johan, et al. (author)
  • Relation between smoking history and gene expression profiles in lung adenocarcinomas
  • 2012
  • In: BMC Medical Genomics. - : Springer Science and Business Media LLC. - 1755-8794. ; 5
  • Journal article (peer-reviewed)abstract
    • Background: Lung cancer is the worldwide leading cause of death from cancer. Tobacco usage is the major pathogenic factor, but all lung cancers are not attributable to smoking. Specifically, lung cancer in never-smokers has been suggested to represent a distinct disease entity compared to lung cancer arising in smokers due to differences in etiology, natural history and response to specific treatment regimes. However, the genetic aberrations that differ between smokers and never-smokers' lung carcinomas remain to a large extent unclear. Methods: Unsupervised gene expression analysis of 39 primary lung adenocarcinomas was performed using Illumina HT-12 microarrays. Results from unsupervised analysis were validated in six external adenocarcinoma data sets (n=687), and six data sets comprising normal airway epithelial or normal lung tissue specimens (n=467). Supervised gene expression analysis between smokers and never-smokers were performed in seven adenocarcinoma data sets, and results validated in the six normal data sets. Results: Initial unsupervised analysis of 39 adenocarcinomas identified two subgroups of which one harbored all never-smokers. A generated gene expression signature could subsequently identify never-smokers with 79-100% sensitivity in external adenocarcinoma data sets and with 76-88% sensitivity in the normal materials. A notable fraction of current/former smokers were grouped with never-smokers. Intriguingly, supervised analysis of never-smokers versus smokers in seven adenocarcinoma data sets generated similar results. Overlap in classification between the two approaches was high, indicating that both approaches identify a common set of samples from current/former smokers as potential never-smokers. The gene signature from unsupervised analysis included several genes implicated in lung tumorigenesis, immune-response associated pathways, genes previously associated with smoking, as well as marker genes for alveolar type II pneumocytes, while the best classifier from supervised analysis comprised genes strongly associated with proliferation, but also genes previously associated with smoking. Conclusions: Based on gene expression profiling, we demonstrate that never-smokers can be identified with high sensitivity in both tumor material and normal airway epithelial specimens. Our results indicate that tumors arising in never-smokers, together with a subset of tumors from smokers, represent a distinct entity of lung adenocarcinomas. Taken together, these analyses provide further insight into the transcriptional patterns occurring in lung adenocarcinoma stratified by smoking history.
  •  
7.
  •  
8.
  • Arason, Adalgeir, et al. (author)
  • Genome-wide search for breast cancer linkage in large Icelandic non-BRCA1/2 families
  • 2010
  • In: Breast Cancer Research. - : Springer Science and Business Media LLC. - 1465-5411 .- 1465-542X. ; 12:4, s. R50-
  • Journal article (peer-reviewed)abstract
    • Chromosomes 2p, 6q and 14q are candidate sites for genes contributing together to high breast cancer risk. A polygenic model is supported, suggesting the joint effect of genes in contributing to breast cancer risk to be rather common in non-BRCA1/2 families. For genetic counselling it would seem important to resolve the mode of genetic interaction.
  •  
9.
  •  
10.
  • Holm, Karolina, et al. (author)
  • Characterisation of amplification patterns and target genes at chromosome 11q13 in CCND1-amplified sporadic and familial breast tumours.
  • 2012
  • In: Breast Cancer Research and Treatment. - : Springer Science and Business Media LLC. - 1573-7217 .- 0167-6806. ; 133:2, s. 583-594
  • Journal article (peer-reviewed)abstract
    • Amplification of chromosomal region 11q13, containing the cell cycle regulatory gene CCND1, is frequently found in breast cancer and other malignancies. It is associated with the favourable oestrogen receptor (ER)-positive breast tumour phenotype, but also with poor prognosis and treatment failure. 11q13 spans almost 14 Mb and contains more than 200 genes and is affected by various patterns of copy number gains, suggesting complex mechanisms and selective pressure during tumour progression. In this study, we used 32 k tiling BAC array CGH to analyse 94 CCND1-amplified breast tumours from sporadic, hereditary, and familial breast cancers to fine map chromosome 11q13. A set containing 281 CCND1-non-amplified breast tumours was used for comparisons. We used gene expression data to further validate the functional effect of gene amplification. We identified six core regions covering 11q13.1-q14.1 that were amplified in different combinations. The major core contained CCND1, whereas two cores were found proximal of CCND1 and three distal. The majority of the CCND1-amplified tumours were ER-positive and classified as luminal B. Furthermore, we found that CCND1 amplification is associated with a more aggressive phenotype within histological grade 2 tumours and luminal A subtype tumours. Amplification was equally prevalent in familial and sporadic tumours, but strikingly rare in BRCA1- and BRCA2-mutated tumours. We conclude that 11q13 includes many potential target genes in addition to CCND1.
  •  
11.
  •  
12.
  • Johannsdottir, Hrefna K., et al. (author)
  • Chromosome 5 imbalance mapping in breast tumors from BRCA1 and BRCA2 mutation carriers and sporadic breast tumors
  • 2006
  • In: International Journal of Cancer. - : Wiley. - 0020-7136 .- 1097-0215. ; 119:5, s. 1052-1060
  • Journal article (peer-reviewed)abstract
    • Comparative genomic hybridization (CGH) analysis has shown that chromosome 5q deletions are the most frequent aberration in breast tumors from BRCA1 mutation carriers. To map the location of putative 5q tumor suppressor gene(s), 26 microsatellite markers covering chromosome 5 were used in loss of heterozygosity (LOH) analysis of breast tumors from BRCA1 (n = 42) and BRCA2 mutation carriers (n = 67), as well as in sporadic cases (n = 65). High, density array CGH was also used to map chromosome 5 imbalance in 10 BRCA1 tumors. A high LOH frequency was found in BRCA1 tumors (range 19-82%), as compared to BRCA2 and sporadic tumors (ranges 11-44% and 7-43%, respectively). In all, 11 distinct chromosome 5 regions with LOH were observed, the most frequent being 5q35.3 (82%), 5q14.2 (71%) and 5q33.1 (69%) in BRCA1 tumors; 5q35.3 (44%), 5q31.3 (43%) and 5q13.3 (43%) in BRCA2 tumors and 5q31.3 (43%) in sporadic tumors. Array CGH analysis confirmed the very high frequency of 5q deletions, including candidate tumor suppressor genes such as XRCC4, RAD50, RASA1, APC and PPP2R2B. In addition, 2 distinct homozygous deletions were identified, spanning regions of 0.7-1.5 Mbp on 5q12.1 and 5q12.3-q13.1, respectively. These regions include only a few genes, most notably BRCC3/DEPDC1B (pleckstrin/G protein interacting and RhoGAP domains) and PIK3R1 (PI3 kinase P85 regulatory subunit). Significant association (p <= 0.05) was found between LOH at certain 5q regions and factors of poor prognosis, including negative estrogen and progesterone receptor status, high grade, large tumor size and high portion of cells in S-phase. In conclusion, our results confirm a very high prevalence of chromosome 5q alterations in BRCA1 tumors, pinpointing new regions and genes that should be further investigated. (c) 2006 Wiley-Liss, Inc.
  •  
13.
  • Johansson, Ida, et al. (author)
  • High-resolution genomic profiling of male breast cancer reveals differences hidden behind the similarities with female breast cancer
  • 2011
  • In: Breast Cancer Research and Treatment. - : Springer Science and Business Media LLC. - 1573-7217 .- 0167-6806. ; 129:3, s. 747-760
  • Journal article (peer-reviewed)abstract
    • Male breast cancer (MBC) is extremely rare and poorly characterized on the molecular level. Using high-resolution genomic data, we aimed to characterize MBC by genomic imbalances and to compare it with female breast cancer (FBC), and further to investigate whether the genomic profiles hold any prognostic information. Fifty-six fresh frozen MBC tumors were analyzed using high-resolution tiling BAC arrays. Significant regions in common between cases were assessed using Genomic Identification of Significant Targets in Cancer (GISTIC) analysis. A publicly available genomic data set of 359 FBC tumors was used for reference purposes. The data revealed a broad pattern of aberrations, confirming that MBC is a heterogeneous tumor type. Genomic gains were more common in MBC than in FBC and often involved whole chromosome arms, while losses of genomic material were less frequent. The most common aberrations were similar between the genders, but high-level amplifications were more common in FBC. We identified two genomic subgroups among MBCs; male-complex and male-simple. The male-complex subgroup displayed striking similarities with the previously reported luminal-complex FBC subgroup, while the male-simple subgroup seems to represent a new subgroup of breast cancer occurring only in men. There are many similarities between FBC and MBC with respect to genomic imbalances, but there are also distinct differences as revealed by high-resolution genomic profiling. MBC can be divided into two comprehensive genomic subgroups, which may be of prognostic value. The male-simple subgroup appears notably different from any genomic subgroup so far defined in FBC.
  •  
14.
  • Jönsson, Göran B, et al. (author)
  • Genomic subtypes of breast cancer identified by array-comparative genomic hybridization display distinct molecular and clinical characteristics
  • 2010
  • In: Breast Cancer Research. - : Springer Science and Business Media LLC. - 1465-5411 .- 1465-542X. ; 12:3
  • Journal article (peer-reviewed)abstract
    • Introduction: Breast cancer is a profoundly heterogeneous disease with respect to biologic and clinical behavior. Gene-expression profiling has been used to dissect this complexity and to stratify tumors into intrinsic gene-expression subtypes, associated with distinct biology, patient outcome, and genomic alterations. Additionally, breast tumors occurring in individuals with germline BRCA1 or BRCA2 mutations typically fall into distinct subtypes. Methods: We applied global DNA copy number and gene-expression profiling in 359 breast tumors. All tumors were classified according to intrinsic gene-expression subtypes and included cases from genetically predisposed women. The Genomic Identification of Significant Targets in Cancer (GISTIC) algorithm was used to identify significant DNA copy-number aberrations and genomic subgroups of breast cancer. Results: We identified 31 genomic regions that were highly amplified in > 1% of the 359 breast tumors. Several amplicons were found to co-occur, the 8p12 and 11q13.3 regions being the most frequent combination besides amplicons on the same chromosomal arm. Unsupervised hierarchical clustering with 133 significant GISTIC regions revealed six genomic subtypes, termed 17q12, basal-complex, luminal-simple, luminal-complex, amplifier, and mixed subtypes. Four of them had striking similarity to intrinsic gene-expression subtypes and showed associations to conventional tumor biomarkers and clinical outcome. However, luminal A-classified tumors were distributed in two main genomic subtypes, luminal-simple and luminal-complex, the former group having a better prognosis, whereas the latter group included also luminal B and the majority of BRCA2-mutated tumors. The basal-complex subtype displayed extensive genomic homogeneity and harbored the majority of BRCA1-mutated tumors. The 17q12 subtype comprised mostly HER2-amplified and HER2-enriched subtype tumors and had the worst prognosis. The amplifier and mixed subtypes contained tumors from all gene-expression subtypes, the former being enriched for 8p12-amplified cases, whereas the mixed subtype included many tumors with predominantly DNA copy-number losses and poor prognosis. Conclusions: Global DNA copy-number analysis integrated with gene-expression data can be used to dissect the complexity of breast cancer. This revealed six genomic subtypes with different clinical behavior and a striking concordance to the intrinsic subtypes. These genomic subtypes may prove useful for understanding the mechanisms of tumor development and for prognostic and treatment prediction purposes.
  •  
15.
  • Nik-Zainal, Serena, et al. (author)
  • Mutational Processes Molding the Genomes of 21 Breast Cancers
  • 2012
  • In: Cell. - : Elsevier BV. - 1097-4172 .- 0092-8674. ; 149:5, s. 979-993
  • Journal article (peer-reviewed)abstract
    • All cancers carry somatic mutations. The patterns of mutation in cancer genomes reflect the DNA damage and repair processes to which cancer cells and their precursors have been exposed. To explore these mechanisms further, we generated catalogs of somatic mutation from 21 breast cancers and applied mathematical methods to extract mutational signatures of the underlying processes. Multiple distinct single- and double-nucleotide substitution signatures were discernible. Cancers with BRCA1 or BRCA2 mutations exhibited a characteristic combination of substitution mutation signatures and a distinctive profile of deletions. Complex relationships between somatic mutation prevalence and transcription were detected. A remarkable phenomenon of localized hypermutation, termed "kataegis,'' was observed. Regions of kataegis differed between cancers but usually colocalized with somatic rearrangements. Base substitutions in these regions were almost exclusively of cytosine at TpC dinucleotides. The mechanisms underlying most of these mutational signatures are unknown. However, a role for the APOBEC family of cytidine deaminases is proposed.
  •  
16.
  • Schoumans, J, et al. (author)
  • Detection and delineation of an unusual 17p11.2 deletion by array-CGH and refinement of the Smith-Magenis syndrome minimum deletion to similar to 650 kb
  • 2005
  • In: European Journal of Medical Genetics. - : Elsevier BV. - 1769-7212. ; 48:3, s. 290-300
  • Journal article (peer-reviewed)abstract
    • Smith-Magenis syndrome (SMS) is a multiple congenital anomaly/mental retardation syndrome and it is characterized by an interstitial deletion of chromosome 17p11.2. SMS patients have a distinct phenotype which is believed to be caused by haploinsufficiency of one or more genes in the associated deleted region. Five non-deletion patients with classical phenotypic features of SMS have been reported with mutations in the retinoic acid induced I (RAII) gene, located within the SMS critical interval. Happloinsufficiency of the RAII gene is likely to be the responsible gene for the majority of the SMS features, but other deleted genes in the SMS region may modify the overall phenotype in the patients with 17p11.2 deletions. SMS is usually diagnosed in the clinical genetic setting by FISH analysis using commercially available probes. We detected a submicroscopic deletion in 17p11.2 using array-CGH with a resolution of approximately 1 Mb in a patient with the SMS phenotype, who was not deleted for the commercially available SMS microdeletion FISH probe. Delineation of the deletion was performed using a 32K tiling BAC-array, containing 32,500 BAC clones. The deletion in this patient was size mapped to 2.7 Mb and covered the RAII gene. This case enabled the refinement of the SMS minimum deletion to similar to 650 kb containing eight putative genes and one predicted gene. In addition, it demonstrates the importance to investigate deletion of RAII in SMS patients.
  •  
17.
  • Staaf, Johan, et al. (author)
  • High-resolution genomic and expression analyses of copy number alterations in HER2-amplified breast cancer
  • 2010
  • In: Breast Cancer Research. - : Springer Science and Business Media LLC. - 1465-5411 .- 1465-542X. ; 12:3
  • Journal article (peer-reviewed)abstract
    • Introduction: HER2 gene amplification and protein overexpression (HER2+) define a clinically challenging subgroup of breast cancer with variable prognosis and response to therapy. Although gene expression profiling has identified an ERBB2 molecular subtype of breast cancer, it is clear that HER2+ tumors reside in all molecular subtypes and represent a genomically and biologically heterogeneous group, needed to be further characterized in large sample sets. Methods: Genome-wide DNA copy number profiling, using bacterial artificial chromosome (BAC) array comparative genomic hybridization (aCGH), and global gene expression profiling were performed on 200 and 87 HER2+ tumors, respectively. Genomic Identification of Significant Targets in Cancer (GISTIC) was used to identify significant copy number alterations (CNAs) in HER2+ tumors, which were related to a set of 554 non-HER2 amplified (HER2-) breast tumors. High-resolution oligonucleotide aCGH was used to delineate the 17q12-q21 region in high detail. Results: The HER2-amplicon was narrowed to an 85.92 kbp region including the TCAP, PNMT, PERLD1, HER2, C17orf37 and GRB7 genes, and higher HER2 copy numbers indicated worse prognosis. In 31% of HER2+ tumors the amplicon extended to TOP2A, defining a subgroup of HER2+ breast cancer associated with estrogen receptor-positive status and with a trend of better survival than HER2+ breast cancers with deleted (18%) or neutral TOP2A (51%). HER2+ tumors were clearly distinguished from HER2-tumors by the presence of recurrent high-level amplifications and firestorm patterns on chromosome 17q. While there was no significant difference between HER2+ and HER2-tumors regarding the incidence of other recurrent high-level amplifications, differences in the co-amplification pattern were observed, as shown by the almost mutually exclusive occurrence of 8p12, 11q13 and 20q13 amplification in HER2+ tumors. GISTIC analysis identified 117 significant CNAs across all autosomes. Supervised analyses revealed: (1) significant CNAs separating HER2+ tumors stratified by clinical variables, and (2) CNAs separating HER2+ from HER2-tumors. Conclusions: We have performed a comprehensive survey of CNAs in HER2+ breast tumors, pinpointing significant genomic alterations including both known and potentially novel therapeutic targets. Our analysis sheds further light on the genomically complex and heterogeneous nature of HER2+ tumors in relation to other subgroups of breast cancer.
  •  
18.
  • Staaf, Johan, et al. (author)
  • Identification of Subtypes in Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer Reveals a Gene Signature Prognostic of Outcome.
  • 2010
  • In: Journal of Clinical Oncology. - 1527-7755. ; 28:11, s. 1813-1820
  • Journal article (peer-reviewed)abstract
    • PURPOSE: Human epidermal growth factor receptor 2 (HER2) gene amplification or protein overexpression (HER2 positivity) defines a clinically challenging subgroup of patients with breast cancer (BC) with variable prognosis and response to therapy. We aimed to investigate the heterogeneous biologic appearance and clinical behavior of HER2-positive tumors using molecular profiling. PATIENTS AND METHODS: Hierarchical clustering of gene expression data from 58 HER2-amplified tumors of various stage, histologic grade, and estrogen receptor (ER) status was used to construct a HER2-derived prognostic predictor that was further evaluated in several large independent BC data sets. RESULTS: Unsupervised analysis identified three subtypes of HER2-positive tumors with mixed stage, histologic grade, and ER status. One subtype had a significantly worse clinical outcome. A prognostic predictor was created based on differentially expressed genes between the subtype with worse outcome and the other subtypes. The predictor was able to define patient groups with better and worse outcome in HER2-positive BC across multiple independent BC data sets and identify a sizable HER2-positive group with long disease-free survival and low mortality. Significant correlation to prognosis was also observed in basal-like, ER-negative, lymph node-positive, and high-grade tumors, irrespective of HER2 status. The predictor included genes associated with immune response, tumor invasion, and metastasis. CONCLUSION: The HER2-derived prognostic predictor provides further insight into the heterogeneous biology of HER2-positive tumors and may become useful for improved selection of patients who need additional treatment with new drugs targeting the HER2 pathway.
  •  
19.
  • Wadt, K. A. W., et al. (author)
  • A recurrent germline BAP1 mutation and extension of the BAP1 tumor predisposition spectrum to include basal cell carcinoma
  • 2015
  • In: Clinical Genetics. - : Wiley. - 0009-9163. ; 88:3, s. 267-272
  • Journal article (peer-reviewed)abstract
    • We report four previously undescribed families with germline BRCA1-associated protein-1 gene (BAP1) mutations and expand the clinical phenotype of this tumor syndrome. The tumor spectrum in these families is predominantly uveal malignant melanoma (UMM), cutaneous malignant melanoma (CMM) and mesothelioma, as previously reported for germline BAP1 mutations. However, mutation carriers from three new families, and one previously reported family, developed basal cell carcinoma (BCC), thus suggesting inclusion of BCC in the phenotypic spectrum of the BAP1 tumor syndrome. This notion is supported by the finding of loss of BAP1 protein expression by immunochemistry in two BCCs from individuals with germline BAP1 mutations and no loss of BAP1 staining in 53 of sporadic BCCs consistent with somatic mutations and loss of heterozygosity of the gene in the BCCs occurring in mutation carriers. Lastly, we identify the first reported recurrent mutation in BAP1 (p.R60X), which occurred in three families from two different continents. In two of the families, the mutation was inherited from a common founder but it arose independently in the third family.
  •  
20.
  •  
21.
  • Aoude, Lauren G., et al. (author)
  • A BAP1 Mutation in a Danish Family Predisposes to Uveal Melanoma and Other Cancers
  • 2013
  • In: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:8
  • Journal article (peer-reviewed)abstract
    • Truncating germline mutations in the tumor suppressor gene BRCA-1 associated protein-1 (BAP1) have been reported in families predisposed to developing a wide range of different cancer types including uveal melanoma and cutaneous melanoma. There has also been an association between amelanotic tumor development and germline BAP1 mutation suggesting a possible phenotypic characteristic of BAP1 mutation carriers. Though there have been many types of cancer associated with germline BAP1 mutation, the full spectrum of disease association is yet to be ascertained. Here we describe a Danish family with predominantly uveal melanoma but also a range of other tumor types including lung, neuroendocrine, stomach, and breast cancer; as well as pigmented skin lesions. Whole-exome sequencing identified a BAP1 splice mutation located at c.581-2A>G, which leads to a premature truncation of BAP1 in an individual with uveal melanoma. This mutation was carried by several other family members with melanoma or various cancers. The finding expands on the growing profile of BAP1 as an important uveal and cutaneous melanoma tumor suppressor gene and implicates its involvement in the development of lung, and stomach cancer.
  •  
22.
  • Aoude, Lauren G, et al. (author)
  • Nonsense Mutations in the Shelterin Complex Genes ACD and TERF2IP in Familial Melanoma.
  • 2015
  • In: Journal of the National Cancer Institute. - : Oxford University Press (OUP). - 1460-2105 .- 0027-8874. ; 107:2, s. 408-408
  • Journal article (peer-reviewed)abstract
    • The shelterin complex protects chromosomal ends by regulating how the telomerase complex interacts with telomeres. Following the recent finding in familial melanoma of inactivating germline mutations in POT1, encoding a member of the shelterin complex, we searched for mutations in the other five components of the shelterin complex in melanoma families.
  •  
23.
  • Bald, Tobias, et al. (author)
  • Immune Cell-Poor Melanomas Benefit from PD-1 Blockade after Targeted Type I IFN Activation
  • 2014
  • In: Cancer Discovery. - 2159-8274. ; 4:6, s. 674-687
  • Journal article (peer-reviewed)abstract
    • Infiltration of human melanomas with cytotoxic immune cells correlates with spontaneous type I IFN activation and a favorable prognosis. Therapeutic blockade of immune-inhibitory receptors in patients with preexisting lymphocytic infiltrates prolongs survival, but new complementary strategies are needed to activate cellular antitumor immunity in immune cell-poor melanomas. Here, we show that primary melanomas in Hgf-Cdk4(R24C) mice, which imitate human immune cell-poor melanomas with a poor outcome, escape IFN-induced immune surveillance and editing. Peritumoral injections of immunostimulatory RNA initiated a cytotoxic inflammatory response in the tumor microenvironment and significantly impaired tumor growth. This critically required the coordinated induction of type I IFN responses by dendritic, myeloid, natural killer, and T cells. Importantly, antibody-mediated blockade of the IFN-induced immune-inhibitory interaction between PD-L1 and PD-1 receptors further prolonged the survival. These results highlight important interconnections between type I IFNs and immune-inhibitory receptors in melanoma pathogenesis, which serve as targets for combination immunotherapies. SIGNIFICANCE: Using a genetically engineered mouse melanoma model, we demonstrate that targeted activation of the type I IFN system with immunostimulatory RNA in combination with blockade of immune-inhibitory receptors is a rational strategy to expose immune cell-poor tumors to cellular immune surveillance. (C) 2014 AACR.
  •  
24.
  • Barrett, Jennifer H., et al. (author)
  • Genome-wide association study identifies three new melanoma susceptibility loci
  • 2011
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 43:11, s. 1108-1113
  • Journal article (peer-reviewed)abstract
    • We report a genome-wide association study for melanoma that was conducted by the GenoMEL Consortium. Our discovery phase included 2,981 individuals with melanoma and 1,982 study-specific control individuals of European ancestry, as well as an additional 6,426 control subjects from French or British populations, all of whom were genotyped for 317,000 or 610,000 single-nucleotide polymorphisms (SNPs). Our analysis replicated previously known melanoma susceptibility loci. Seven new regions with at least one SNP with P < 10(-5) and further local imputed or genotyped support were selected for replication using two other genome-wide studies (from Australia and Texas, USA). Additional replication came from case-control series from the UK and The Netherlands. Variants at three of the seven loci replicated at P < 10(-3): an SNP in ATM (rs1801516, overall P = 3.4 x 10(-9)), an SNP in MX2 (rs45430, P = 2.9 x 10-9) and an SNP adjacent to CASP8 (rs13016963, P = 8.6 x 10(-10)). A fourth locus near CCND1 remains of potential interest, showing suggestive but inconclusive evidence of replication (rs1485993, overall P = 4.6 x 10(-7) under a fixed-effects model and P = 1.2 x 10(-3) under a random-effects model). These newly associated variants showed no association with nevus or pigmentation phenotypes in a large British case-control series.
  •  
25.
  • Bartuma, Katarina, et al. (author)
  • Genetic profiles distinguish different types of hereditary ovarian cancer.
  • 2010
  • In: Oncology Reports. - : Spandidos Publications. - 1791-2431 .- 1021-335X. ; 24:4, s. 885-895
  • Journal article (peer-reviewed)abstract
    • Heredity represents the strongest risk factor for ovarian cancer with disease predisposing mutations identified in 15% of the tumors. With the aim to identify genetic classifiers for hereditary ovarian cancer, we profiled hereditary ovarian cancers linked to the hereditary breast and ovarian cancer (HBOC) syndrome and the hereditary non-polyposis colorectal cancer (HNPCC) syndrome. Genome-wide array comparative genomic hybridization was applied to 12 HBOC associated tumors with BRCA1 mutations and 8 HNPCC associated tumors with mismatch repair gene mutations with 24 sporadic ovarian cancers as a control group. Unsupervised cluster analysis identified two distinct subgroups related to genetic complexity. Sporadic and HBOC associated tumors had complex genetic profiles with an average 41% of the genome altered, whereas the mismatch repair defective tumors had stable genetic profiles, with an average 18% of the genome altered. Losses of 4q34, 13q12-q32 and 19p13 were overrepresented in the HBOC subset. Discriminating genes within these regions include BRCA2, FOXO1A and RB1. Gains on chromosomes 17 and 19 characterized the HNPCC tumors, but target genes herein are unknown. The results indicate that HBOC and HNPCC associated ovarian cancer develop along distinct genetic pathways and genetic profiles can thus be applied to distinguish between different types of hereditary ovarian cancer.
  •  
26.
  • Bengtsson, Henrik, et al. (author)
  • Calibration and assessment of channel-specific biases in microarray data with extended dynamical range
  • 2004
  • In: BMC Bioinformatics. - : Springer Science and Business Media LLC. - 1471-2105. ; 5
  • Journal article (peer-reviewed)abstract
    • Background: Non-linearities in observed log-ratios of gene expressions, also known as intensity dependent log-ratios, can often be accounted for by global biases in the two channels being compared. Any step in a microarray process may introduce such offsets and in this article we study the biases introduced by the microarray scanner and the image analysis software. Results: By scanning the same spotted oligonucleotide microarray at different photomultiplier tube (PMT) gains, we have identified a channel-specific bias present in two-channel microarray data. For the scanners analyzed it was in the range of 15 - 25 ( out of 65,535). The observed bias was very stable between subsequent scans of the same array although the PMT gain was greatly adjusted. This indicates that the bias does not originate from a step preceding the scanner detector parts. The bias varies slightly between arrays. When comparing estimates based on data from the same array, but from different scanners, we have found that different scanners introduce different amounts of bias. So do various image analysis methods. We propose a scanning protocol and a constrained affine model that allows us to identify and estimate the bias in each channel. Backward transformation removes the bias and brings the channels to the same scale. The result is that systematic effects such as intensity dependent log-ratios are removed, but also that signal densities become much more similar. The average scan, which has a larger dynamical range and greater signal-to-noise ratio than individual scans, can then be obtained. Conclusions: The study shows that microarray scanners may introduce a significant bias in each channel. Such biases have to be calibrated for, otherwise systematic effects such as intensity dependent log-ratios will be observed. The proposed scanning protocol and calibration method is simple to use and is useful for evaluating scanner biases or for obtaining calibrated measurements with extended dynamical range and better precision. The cross-platform R package aroma, which implements all described methods, is available for free from http://www.maths.lth.se/ bioinformatics/.
  •  
27.
  • Birkeland, Einar, et al. (author)
  • Low BRAF and NRAS expression levels are associated with clinical benefit from DTIC therapy and prognosis in metastatic melanoma
  • 2013
  • In: Clinical and Experimental Metastasis. - : Springer Science and Business Media LLC. - 1573-7276 .- 0262-0898. ; 30:7, s. 867-876
  • Journal article (peer-reviewed)abstract
    • Metastatic melanoma is characterized by a poor response to chemotherapy. Furthermore, there is a lack of established predictive and prognostic markers. In this single institution study, we correlated mutation status and expression levels of BRAF and NRAS to dacarbazine (DTIC) treatment response as well as progression-free and overall survival in a cohort of 85 patients diagnosed with advanced melanoma. Neither BRAF nor NRAS mutation status correlated to treatment response. However, patients with tumors harboring NRAS mutations had a shorter overall survival (p < 0.001) compared to patients with tumors wild-type for NRAS. Patients having a clinical benefit (objective response or stable disease at 3 months) on DTIC therapy had lower BRAF and NRAS expression levels compared to patients progressing on therapy (p = 0.037 and 0.003, respectively). For BRAF expression, this association was stronger among patients with tumors wild-type for BRAF (p = 0.005). Further, low BRAF as well as NRAS expression levels were associated with a longer progression-free survival in the total population (p = 0.004 and < 0.001, respectively). Contrasting low NRAS expression levels, which were associated with improved overall survival in the total population (p = 0.01), low BRAF levels were associated with improved overall survival only among patients with tumors wild-type for BRAF (p = 0.013). These findings indicate that BRAF and NRAS expression levels may influence responses to DTIC as well as prognosis in patients with advanced melanoma.
  •  
28.
  • Brommesson, Sara, et al. (author)
  • Tiling array-CGH for the assessment of genomic similarities among synchronous unilateral and bilateral invasive breast cancer tumor pairs.
  • 2008
  • In: BMC Clinical Pathology. - : Springer Science and Business Media LLC. - 1472-6890. ; 8:July 10
  • Journal article (peer-reviewed)abstract
    • ABSTRACT: BACKGROUND: Today, no objective criteria exist to differentiate between individual primary tumors and intra- or intermammary dissemination respectively, in patients diagnosed with two or more synchronous breast cancers. To elucidate whether these tumors most likely arise through clonal expansion, or whether they represent individual primary tumors is of tumor biological interest and may have clinical implications. In this respect, high resolution genomic profiling may provide a more reliable approach than conventional histopathological and tumor biological factors. METHODS: 32 K tiling microarray-based comparative genomic hybridization (aCGH) was used to explore the genomic similarities among synchronous unilateral and bilateral invasive breast cancer tumor pairs, and was compared with histopathological and tumor biological parameters. RESULTS: Based on global copy number profiles and unsupervised hierarchical clustering, five of ten (p = 1.9 x 10-5) unilateral tumor pairs displayed similar genomic profiles within the pair, while only one of eight bilateral tumor pairs (p = 0.29) displayed pair-wise genomic similarities. DNA index, histological type and presence of vessel invasion correlated with the genomic analyses. CONCLUSION: Synchronous unilateral tumor pairs are often genomically similar, while synchronous bilateral tumors most often represent individual primary tumors. However, two independent unilateral primary tumors can develop synchronously and contralateral tumor spread can occur. The presence of an intraductal component is not informative when establishing the independence of two tumors, while vessel invasion, the presence of which was found in clustering tumor pairs but not in tumor pairs that did not cluster together, supports the clustering outcome. Our data suggest that genomically similar unilateral tumor pairs may represent a more aggressive disease that requires the addition of more severe treatment modalities, and underscores the importance of evaluating the clonality of multiple tumors for optimal patient management. In summary, our findings demonstrate the importance of evaluating the properties of both tumors in order to determine the most optimal patient management.
  •  
29.
  • Carneiro, Ana, et al. (author)
  • Prognostic impact of array-based genomic profiles in esophageal squamous cell cancer
  • 2008
  • In: BMC Cancer. - : Springer Science and Business Media LLC. - 1471-2407. ; 8:98
  • Journal article (peer-reviewed)abstract
    • Background: Esophageal squamous cell carcinoma (ESCC) is a genetically complex tumor type and a major cause of cancer related mortality. Although distinct genetic alterations have been linked to ESCC development and prognosis, the genetic alterations have not gained clinical applicability. We applied array-based comparative genomic hybridization (aCGH) to obtain a whole genome copy number profile relevant for identifying deranged pathways and clinically applicable markers. Methods: A 32 k aCGH platform was used for high resolution mapping of copy number changes in 30 stage I-IV ESCC. Potential interdependent alterations and deranged pathways were identified and copy number changes were correlated to stage, differentiation and survival. Results: Copy number alterations affected median 19% of the genome and included recurrent gains of chromosome regions 5p, 7p, 7q, 8q, 10q, 11q, 12p, 14q, 16p, 17p, 19p, 19q, and 20q and losses of 3p, 5q, 8p, 9p and 11q. High-level amplifications were observed in 30 regions and recurrently involved 7p11 (EGFR), 11q13 (MYEOV, CCND1, FGF4, FGF3, PPFIA, FAD, TMEM16A, CTTS and SHANK2) and 11q22 (PDFG). Gain of 7p22.3 predicted nodal metastases and gains of 1p36.32 and 19p13.3 independently predicted poor survival in multivariate analysis. Conclusion: aCGH profiling verified genetic complexity in ESCC and herein identified imbalances of multiple central tumorigenic pathways. Distinct gains correlate with clinicopathological variables and independently predict survival, suggesting clinical applicability of genomic profiling in ESCC.
  •  
30.
  • Cirenajwis, Helena, et al. (author)
  • Molecular stratification of metastatic melanoma using gene expression profiling: prediction of survival outcome and benefit from molecular targeted therapy.
  • 2015
  • In: Oncotarget. - : Impact Journals, LLC. - 1949-2553. ; 6:14, s. 12297-12309
  • Journal article (peer-reviewed)abstract
    • Melanoma is currently divided on a genetic level according to mutational status. However, this classification does not optimally predict prognosis. In prior studies, we have defined gene expression phenotypes (high-immune, pigmentation, proliferative and normal-like), which are predictive of survival outcome as well as informative of biology. Herein, we employed a population-based metastatic melanoma cohort and external cohorts to determine the prognostic and predictive significance of the gene expression phenotypes. We performed expression profiling on 214 cutaneous melanoma tumors and found an increased risk of developing distant metastases in the pigmentation (HR, 1.9; 95% CI, 1.05-3.28; P=0.03) and proliferative (HR, 2.8; 95% CI, 1.43-5.57; P=0.003) groups as compared to the high-immune response group. Further genetic characterization of melanomas using targeted deep-sequencing revealed similar mutational patterns across these phenotypes. We also used publicly available expression profiling data from melanoma patients treated with targeted or vaccine therapy in order to determine if our signatures predicted therapeutic response. In patients receiving targeted therapy, melanomas resistant to targeted therapy were enriched in the MITF-low proliferative subtype as compared to pre-treatment biopsies (P=0.02). In summary, the melanoma gene expression phenotypes are highly predictive of survival outcome and can further help to discriminate patients responding to targeted therapy.
  •  
31.
  • Cirenajwis, Helena, et al. (author)
  • NF1-mutated melanoma tumors harbor distinct clinical and biological characteristics
  • 2017
  • In: Molecular Oncology. - : Wiley. - 1574-7891. ; 11:4, s. 438-451
  • Journal article (peer-reviewed)abstract
    • In general, melanoma can be considered as a UV-driven disease with an aggressive metastatic course and high mutational load, with only few tumors (acral, mucosal, and uveal melanomas) not induced by sunlight and possessing a lower mutational load. The most commonly activated pathway in melanoma is the mitogen-activated protein kinase (MAPK) pathway. However, the prognostic significance of mutational stratification is unclear and needs further investigation. Here, in silico we combined mutation data from 162 melanomas subjected to targeted deep sequencing with mutation data from three published studies. Tumors from 870 patients were grouped according to BRAF, RAS, NF1 mutation or triple-wild-type status and correlated with tumor and patient characteristics. We found that the NF1-mutated subtype had a higher mutational burden and strongest UV mutation signature. Searching for co-occurring mutated genes revealed the RASopathy genes PTPN11 and RASA2, as well as another RAS domain-containing gene RASSF2 enriched in the NF1 subtype after adjustment for mutational burden. We found that a larger proportion of the NF1-mutant tumors were from males and with older age at diagnosis. Importantly, we found an increased risk of death from melanoma (disease-specific survival, DSS; HR, 1.9; 95% CI, 1.21-3.10; P = 0.046) and poor overall survival (OS; HR, 2.0; 95% CI, 1.28-2.98; P = 0.01) in the NF1 subtype, which remained significant after adjustment for age, gender, and lesion type (DSS P = 0.03, OS P = 0.06, respectively). Melanoma genomic subtypes display different biological and clinical characteristics. The poor outcome observed in the NF1 subtype highlights the need for improved characterization of this group.
  •  
32.
  • Dahl, Christina, et al. (author)
  • Mutual Exclusivity Analysis of Genetic and Epigenetic Drivers in Melanoma Identifies a Link Between p14(ARF) and RAR beta Signaling
  • 2013
  • In: Molecular Cancer Research. - 1557-3125. ; 11:10, s. 1166-1178
  • Journal article (peer-reviewed)abstract
    • Melanoma genomes contain thousands of alterations including: mutations, copy number alterations, structural aberrations, and methylation changes. The bulk of this variation is stochastic and functionally neutral, with only a small minority representing "drivers" that contribute to the genesis and maintenance of tumors. Drivers are often directly or inversely correlated across tumors, reflecting the molecular and regulatory signaling pathways in which they operate. Here, a profile of genetic and epigenetic drivers in 110 human melanoma cell lines was generated and searched for non-random distribution patterns. Statistically significant mutual exclusivity was revealed among components of each of the p16(INK4A)-CDK4-RB, RAS-RAF-MEK-ERK and PI3K-AKT signaling pathways. In addition, an inverse correlation was observed between promoter hypermethylation of retinoic acid receptor beta (RARB) and CDKN2A alterations affecting p14(ARF) (P < 0.0001), suggesting a functional link between RAR beta signaling and the melanoma-suppressive activities of p14(ARF). Mechanistically, all-trans retinoic acid (ATRA) treatment increased the expression of p14(ARF) in primary human melanocytes and the steady-state levels of p14(ARF) in these cells were shown to be regulated via RAR beta. Furthermore, the ability of ATRA to induce senescence is reduced in p14(ARF)-depleted melanocytes, and we provide proof-of-concept that ATRA can induce irreversible growth arrest in melanoma cells with an intact RARb-p14(ARF) signaling axis, independent of p16(INK4A) and p53 status. Implications: These data highlight the power of mutual exclusivity analysis of cancer drivers to unravel molecular pathways and establish a previously unrecognized cross-talk between RAR beta and p14(ARF) with potential implications for melanoma treatment.
  •  
33.
  • Davies, John R., et al. (author)
  • An inherited variant in the gene coding for vitamin D-binding protein and survival from cutaneous melanoma: a BioGenoMEL study
  • 2014
  • In: Pigment Cell & Melanoma Research. - : Wiley. - 1755-148X .- 1755-1471. ; 27:2, s. 234-243
  • Journal article (peer-reviewed)abstract
    • An association between low serum vitamin D levels and poorer melanoma survival has been reported. We have studied inheritance of a polymorphism of the GC gene, rs2282679, coding for the vitamin D-binding protein, which is associated with lower serum levels of vitamin D, in a meta-analysis of 3137 melanoma patients. The aim was to investigate evidence for a causal relationship between vitamin D and outcome (Mendelian randomization). The variant was not associated with reduced overall survival (OS) in the UK cohort, per-allele hazard ratio (HR) for death 1.23 (95% confidence interval (CI) 0.93, 1.64). In the smaller cohorts, HR in OS analysis was 1.07 (95% CI 0.88, 1.3) and for all cohorts combined, HR for OS was 1.09 (95% CI 0.93, 1.29). There was evidence of increased melanoma-specific deaths in the seven cohorts for which these data were available. The lack of unequivocal findings despite the large sample size illustrates the difficulties of implementing Mendelian randomization.
  •  
34.
  •  
35.
  • Ekström, Elin, et al. (author)
  • WNT5A induces release of exosomes containing pro-angiogenic and immunosuppressive factors from malignant melanoma cells
  • 2014
  • In: Molecular Cancer. - : Springer Science and Business Media LLC. - 1476-4598. ; 13
  • Journal article (peer-reviewed)abstract
    • Background: Wnt proteins are important for developmental processes and certain diseases. WNT5A is a non-canonical Wnt protein that previously has been shown to play a role in the progression of malignant melanoma. High expression of WNT5A in melanoma tumors correlates to formation of distant metastasis and poor prognosis. This has partly been described by the findings that WNT5A expression in melanoma cell lines increases migration and invasion. Methods: Malignant melanoma cell lines were treated with rWNT5A or WNT5A siRNA, and mRNA versus protein levels of soluble mediators were measured using RT-PCR, cytokine bead array and ELISA. The induced signaling pathways were analyzed using inhibitors, Rho-GTPase pull down assays and western blot. Ultracentrifugation and electron microscopy was used to analyze microvesicles. Gene expression microarray data obtained from primary malignant melanomas was used to verify our data. Results: We show that WNT5A signaling induces a Ca2+-dependent release of exosomes containing the immunomodulatory and pro-angiogenic proteins IL-6, VEGF and MMP2 in melanoma cells. The process was independent of the transcriptional machinery and depletion of WNT5A reduced the levels of the exosome-derived proteins. The WNT5A induced exosomal secretion was neither affected by Tetanus toxin nor Brefeldin A, but was blocked by the calcium chelator Bapta, inhibited by a dominant negative version of the small Rho-GTPase Cdc42 and was accompanied by cytoskeletal reorganization. Co-cultures of melanoma/endothelial cells showed that depletion of WNT5A in melanoma cells decreased endothelial cell branching, while stimulation of endothelial cells with isolated rWNT5A-induced melanoma exosomes increased endothelial cell branching in vitro. Finally, gene expression data analysis of primary malignant melanomas revealed a correlation between WNT5A expression and the angiogenesis marker ESAM. Conclusions: These data indicate that WNT5A has a broader function on tumor progression and metastatic spread than previously known; by inducing exosome-release of immunomodulatory and pro-angiogenic factors that enhance the immunosuppressive and angiogenic capacity of the tumors thus rendering them more aggressive and more prone to metastasize.
  •  
36.
  • Ellberg, Carolina, et al. (author)
  • Can a phenotype for recessive inheritance in breast cancer be defined?
  • 2010
  • In: Familial Cancer. - : Springer Science and Business Media LLC. - 1389-9600 .- 1573-7292. ; 9:4, s. 525-530
  • Journal article (peer-reviewed)abstract
    • While a dominant inheritance of breast cancer (vertical inheritance) is well known, less is known about a possible recessive inheritance (horizontal inheritance). In a clinical series of 1676 breast cancer patient's family history was scored as vertical (grandmother-aunt-mother-sister-daughter) or horizontal (sister-sister) and related to histopathological tumor type, presence of germline mutations, bilaterality, multifocality, screening, parity, hormone replacement therapy (HRT) use and age at diagnosis. Prognosis was estimated by also adding tumor size, lymph node status, distant metastases and hormone receptor status at diagnosis into a Cox proportional hazard model. Excluding mutations carriers, a horizontal family history (5% of all cases) was significantly associated with tubular tumor type [OR = 3.87(1.44-10.41)]. A vertical family history (23% of all cases) was significantly related to tumor multifocality [OR = 2.30(1.51-3.50)], tumor bilaterality [OR = 2.08(1.44-3.00)] and screening detection [OR = 1.50(1.10-2.05)]. No significant difference in survival could be seen between patients with none, horizontal or vertical family history. However, germline mutation carriers (BRCA1/2, TP53 or CDKN2A, present in 0.95% of the cases) had a significantly worse survival. Screening detected cases, HRT ever users and patients with estrogen receptor positive tumors had a significantly better survival adjusting for age at diagnosis, tumor size, lymph node status and presence of distant metastases at diagnosis. Factors associated with a horizontal family history were found, defining a possible phenotype for a recessive inheritance: tubular breast cancer.
  •  
37.
  • Garg, Manik, et al. (author)
  • Tumour gene expression signature in primary melanoma predicts long-term outcomes
  • 2021
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Journal article (peer-reviewed)abstract
    • Adjuvant systemic therapies are now routinely used following resection of stage III melanoma, however accurate prognostic information is needed to better stratify patients. We use differential expression analyses of primary tumours from 204 RNA-sequenced melanomas within a large adjuvant trial, identifying a 121 metastasis-associated gene signature. This signature strongly associated with progression-free (HR = 1.63, p = 5.24 × 10−5) and overall survival (HR = 1.61, p = 1.67 × 10−4), was validated in 175 regional lymph nodes metastasis as well as two externally ascertained datasets. The machine learning classification models trained using the signature genes performed significantly better in predicting metastases than models trained with clinical covariates (pAUROC = 7.03 × 10−4), or published prognostic signatures (pAUROC < 0.05). The signature score negatively correlated with measures of immune cell infiltration (ρ = −0.75, p < 2.2 × 10−16), with a higher score representing reduced lymphocyte infiltration and a higher 5-year risk of death in stage II melanoma. Our expression signature identifies melanoma patients at higher risk of metastases and warrants further evaluation in adjuvant clinical trials.
  •  
38.
  •  
39.
  • Hamm, Michael, et al. (author)
  • BRN2 is a non-canonical melanoma tumor-suppressor
  • 2021
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Journal article (peer-reviewed)abstract
    • While the major drivers of melanoma initiation, including activation of NRAS/BRAF and loss of PTEN or CDKN2A, have been identified, the role of key transcription factors that impose altered transcriptional states in response to deregulated signaling is not well understood. The POU domain transcription factor BRN2 is a key regulator of melanoma invasion, yet its role in melanoma initiation remains unknown. Here, in a BrafV600EPtenF/+ context, we show that BRN2 haplo-insufficiency promotes melanoma initiation and metastasis. However, metastatic colonization is less efficient in the absence of Brn2. Mechanistically, BRN2 directly induces PTEN expression and in consequence represses PI3K signaling. Moreover, MITF, a BRN2 target, represses PTEN transcription. Collectively, our results suggest that on a PTEN heterozygous background somatic deletion of one BRN2 allele and temporal regulation of the other allele elicits melanoma initiation and progression.
  •  
40.
  • Hansén Nord, Karolin, et al. (author)
  • Frequent deletion of the CDKN2A locus in chordoma: analysis of chromosomal imbalances using array comparative genomic hybridisation.
  • 2008
  • In: British Journal of Cancer. - : Springer Science and Business Media LLC. - 1532-1827 .- 0007-0920. ; 98:2, s. 434-442
  • Journal article (peer-reviewed)abstract
    • The initiating somatic genetic events in chordoma development have not yet been identified. Most cytogenetically investigated chordomas have displayed near-diploid or moderately hypodiploid karyotypes, with several numerical and structural rearrangements. However, no consistent structural chromosome aberration has been reported. This is the first array-based study characterising DNA copy number changes in chordoma. Array comparative genomic hybridisation (aCGH) identified copy number alterations in all samples and imbalances affecting 5 or more out of the 21 investigated tumours were seen on all chromosomes. In general, deletions were more common than gains and no high-level amplification was found, supporting previous findings of primarily losses of large chromosomal regions as an important mechanism in chordoma development. Although small imbalances were commonly found, the vast majority of these were detected in single cases; no small deletion affecting all tumours could be discerned. However, the CDKN2A and CDKN2B loci in 9p21 were homo- or heterozygously lost in 70% of the tumours, a finding corroborated by fluorescence in situ hybridisation, suggesting that inactivation of these genes constitute an important step in chordoma development.British Journal of Cancer (2008) 98, 434-442. doi:10.1038/sj.bjc.6604130 www.bjcancer.com Published online 11 December 2007.
  •  
41.
  • Harbst, Katja, et al. (author)
  • Molecular and genetic diversity in the metastatic process of melanoma.
  • 2014
  • In: Journal of Pathology. - : Wiley. - 0022-3417 .- 1096-9896. ; 233:1, s. 39-50
  • Journal article (peer-reviewed)abstract
    • Diversity between metastatic melanoma tumours in individual patients is known; however, the molecular and genetic differences remain unclear. To examine the molecular and genetic differences between metastatic tumours, we performed gene-expression profiling of 63 melanoma tumours obtained from 28 patients (two or three tumours/patient), followed by analysis of their mutational landscape, using targeted deep sequencing of 1697 cancer genes and DNA copy number analysis. Gene-expression signatures revealed discordant phenotypes between tumour lesions within a patient in 50% of the cases. In 18 of 22 patients (where matched normal tissue was available), we found that the multiple lesions within a patient were genetically divergent, with one or more melanoma tumours harbouring 'private' somatic mutations. In one case, the distant subcutaneous metastasis of one patient occurring 3 months after an earlier regional lymph node metastasis had acquired 37 new coding sequence mutations, including mutations in PTEN and CDH1. However, BRAF and NRAS mutations, when present in the first metastasis, were always preserved in subsequent metastases. The patterns of nucleotide substitutions found in this study indicate an influence of UV radiation but possibly also DNA alkylating agents. Our results clearly demonstrate that metastatic melanoma is a molecularly highly heterogeneous disease that continues to progress throughout its clinical course. The private aberrations observed on a background of shared aberrations within a patient provide evidence of continued evolution of individual tumours following divergence from a common parental clone, and might have implications for personalized medicine strategies in melanoma treatment. Published by John Wiley & Sons, Ltd. www.pathsoc.org.uk.
  •  
42.
  • Harbst, Katja, et al. (author)
  • Molecular profiling reveals low- and high-grade forms of primary melanoma.
  • 2012
  • In: Clinical cancer research : an official journal of the American Association for Cancer Research. - 1557-3265. ; 18:15, s. 4026-4036
  • Journal article (peer-reviewed)abstract
    • For primary melanomas, tumor thickness, mitotic rate, and ulceration are well-laid cornerstones of prognostication. However, a molecular exposition of melanoma aggressiveness is critically missing. We recently uncovered a four-class structure in metastatic melanoma, which predicts outcome and informs biology. This raises the possibility that a molecular structure exists even in the early stages of melanoma and that molecular determinants could underlie histophenotype and eventual patient outcome.We subjected 223 archival primary melanomas to a horizontally integrated analysis of RNA expression, oncogenic mutations at 238 lesions, histomorphometry, and survival data.Our previously described four-class structure that was elucidated in metastatic lesions was evident within the expression space of primary melanomas. Because these subclasses converged into two larger prognostic and phenotypic groups, we used the metastatic lesions to develop a binary subtype-based signature capable of distinguishing between "high" and "low" grade forms of the disease. The two-grade signature was subsequently applied to the primary melanomas. Compared with low-grade tumors, high-grade primary melanomas were significantly associated with increased tumor thickness, mitotic rate, ulceration (all P < 0.01), and poorer relapse-free (HR = 4.94; 95% CI, 2.84-8.59), and overall (HR = 3.66; 95% CI, 2.40-5.58) survival. High-grade melanomas exhibited elevated levels of proliferation and BRCA1/DNA damage signaling genes, whereas low-grade lesions harbored higher expression of immune genes. Importantly, the molecular-grade signature was validated in two external gene expression data sets.We provide evidence for a molecular organization within melanomas, which is preserved across all stages of disease.
  •  
43.
  • Harbst, Katja, et al. (author)
  • Multiple metastases from cutaneous malignant melanoma patients may display heterogeneous genomic and epigenomic patterns.
  • 2010
  • In: Melanoma Research. - 0960-8931. ; 20:5, s. 381-391
  • Journal article (peer-reviewed)abstract
    • Disseminated melanoma is an aggressive disease with fatal outcome. Better understanding of the underlying biology is needed to find effective treatment. We applied microarray-based comparative genomic hybridization, gene expression and CpG island methylation analysis of primary tumors and multiple metastases from five melanoma patients with the aim of analyzing the molecular patterns of melanoma progression. Epigenetic profiling showed that the multiple metastases after a single primary melanoma share similar methylation patterns for many genes, although differences in methylation between the lesions were evident for several genes, example, PTEN, TFAP2C, and RARB. In addition, DNA copy number and global gene expression profiles of tumors from individual patients were highly similar, confirming common origin of metastases. Some of the identified genomic aberrations, for example, gain of chromosome 6p and loss of chromosomes 6q and 10, persisted during progression, indicating early changes highly important for melanoma development. Homozygous deletions at 3p26.1 and 6q23.2-q23.3 appeared in two consecutive metastases originating from the same primary tumor, respectively, in a mutually exclusive manner that provides evidence for two genetically different subclones. However, in another case, the similarity of the copy number aberrations in subsequent metastatic lesions suggests sequential metastatic development through the clonal evolution. These data are further corroborated by a switch in CDH1 and CDH2 expression between metastases from the same patient. In conclusion, our results provide evidence for different models of metastatic progression in melanoma.
  •  
44.
  • Harbst, Katja, et al. (author)
  • Multiregion whole-exome sequencing uncovers the genetic evolution and mutational heterogeneity of early-stage metastatic melanoma
  • 2016
  • In: Cancer Research. - 0008-5472. ; 76:16, s. 4765-4774
  • Journal article (peer-reviewed)abstract
    • Cancer genome sequencing has shed light on the underlying genetic aberrations that drive tumorigenesis. However, current sequencing-based strategies, which focus on a single tumor biopsy, fail to take into account intratumoral heterogeneity. To address this challenge and elucidate the evolutionary history of melanoma, we performed whole-exome and transcriptome sequencing of 41 multiple melanoma biopsies from eight individual tumors. This approach revealed heterogeneous somatic mutations in the range of 3%-38% in individual tumors. Known mutations in melanoma drivers BRAF and NRAS were always ubiquitous events. Using RNA sequencing, we found that the majority of mutations were not expressed or were expressed at very low levels, and preferential expression of a particular mutated allele did not occur frequently. In addition, we found that the proportion of ultraviolet B (UVB) radiation-induced C>T transitions differed significantly (P <0.001) between early and late mutation acquisition, suggesting that different mutational processes operate during the evolution of metastatic melanoma. Finally, clinical history reports revealed that patients harboring a high degree of mutational heterogeneity were associated with more aggressive disease progression. In conclusion, our multiregion tumor-sequencing approach highlights the genetic evolution and non-UVB mutational signatures associated with melanoma development and progression, and may provide a more comprehensive perspective of patient outcome.
  •  
45.
  •  
46.
  • Helgadottir, Hildur, et al. (author)
  • CDKN2a mutation-negative melanoma families have increased risk exclusively for skin cancers but not for other malignancies.
  • 2015
  • In: International Journal of Cancer. - : Wiley. - 0020-7136 .- 1097-0215. ; 137:9, s. 2220-2226
  • Journal article (peer-reviewed)abstract
    • Germline CDKN2A mutations are found in 5-20% of melanoma families. Numerous studies have shown that carriers of CDKN2A mutations have increased risks of non-melanoma cancers, but so far there have been no studies investigating cancer risks in CDKN2A wild type (wt) melanoma families. In this prospective cohort study, index melanoma cases (n = 224) and their first-degree relatives (n = 944) were identified from 154 confirmed CDKN2A wt melanoma families. Cancer diagnoses in family members and matched controls were obtained from the Swedish Cancer Registry. Relative risks (RR), odds ratios (OR) and two-sided 95% confidence intervals (95% CI) were calculated. In index cases and first-degree relatives, the prospective RR for melanoma was 56.9 (95% CI 31.4-102.1) and 7.0 (95% CI 4.2-11.4), respectively, and for squamous cell skin cancers 9.1 (95% CI 6.0-13.7) and 3.4 (95% CI 2.2-5.2), respectively. In neither group, elevated risks were seen for non-skin cancers. In a subgroup analysis, CDKN2A wt melanoma families with young (<40 years) melanoma cases were found to have increased risk of non-skin cancers (RR 1.5, 95% CI 1.0-1.5). Further, MC1R gene variants were increased in familial melanoma cases compared to controls (OR 2.4, 95% CI 1.6-3.4). Our findings suggest that in the majority of CDKN2A wt melanoma families, a segregation of variants in low-risk melanoma genes such as MC1R causes increased skin cancer susceptibility, rather than mutations in high-risk cancer predisposing genes, such mutations are more probable to be found in melanoma families with young melanoma cases. This study further supports an implication of CDKN2A mutation screening as a clinical test that determines counseling and follows up routines of melanoma families.
  •  
47.
  • Helgadottir, Hildur, et al. (author)
  • Germline CDKN2A Mutation Status and Survival in Familial Melanoma Cases
  • 2016
  • In: Journal of the National Cancer Institute. - : Oxford University Press (OUP). - 1460-2105 .- 0027-8874. ; 108:11
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Germline mutations in CDKN2A have been associated with increased risk of melanoma and tobacco-related cancers in respiratory and upper digestive tissues. In CDKN2A wild-type (wt) melanoma families, other known high-risk, melanoma-predisposing mutations are rare, and no increased risk has been observed for nonskin cancers in this group. This study is the first to compare survival in germline CDKN2A mutated (mut) and nonmutated melanoma cases.METHODS: Melanoma-prone families participating in this study were identified through a nationwide predictive program starting in 1987. Information on cancer diagnoses (types, stages, and dates) and deaths (causes and dates) were obtained through the Swedish Cancer Registry and Cause of Death Registry. Kaplan Meier and Cox proportional hazards regression models were used to assess survival in CDKN2A(mut) (n = 96) and CDKN2A(wt) (n = 377) familial melanoma cases and in matched sporadic melanoma cases (n = 1042). All statistical tests were two-sided.RESULTS: When comparing CDKN2A(mut) and CDKN2A(wt) melanoma cases, after adjusting for age, sex, and T classification, CDKN2A(mut) had worse survival than melanoma (hazard ratio [HR] = 2.50, 95% confidence interval [CI] = 1.49 to 4.21) and than nonmelanoma cancers (HR = 7.77, 95% CI = 3.65 to 16.51). Compared with matched sporadic cases, CDKN2A(mut) cases had statistically significantly worse survival from both melanoma and nonmelanoma cancers while no differences in survival were seen in CDKN2A(wt) compared with sporadic cases.CONCLUSIONS: CDKN2A(mut) cases had statistically significantly worse survival than nonmelanoma cancers and, intriguingly, also from melanoma, compared with melanoma cases with no CDKN2A mutations. Further studies are required to elucidate possible mechanisms behind increased carcinogen susceptibility and the more aggressive melanoma phenotype in CDKN2A mutation carriers.
  •  
48.
  • Helgadottir, Hildur, et al. (author)
  • High risk of tobacco-related cancers in CDKN2A mutation-positive melanoma families.
  • 2014
  • In: Journal of Medical Genetics. - : BMJ. - 0022-2593 .- 1468-6244. ; 51:8, s. 545-552
  • Journal article (peer-reviewed)abstract
    • Germline mutations in the tumour suppressor gene CDKN2A occur in 5-20% of familial melanoma cases. A single founder mutation, p.Arg112dup, accounts for the majority of CDKN2A mutations in Swedish carriers. In a national program, carriers of p.Arg112dup mutation have been identified. The aim of this study was to assess cancer risks in p.Arg112dup carriers and their first degree relatives (FDRs) and second degree relatives (SDRs).
  •  
49.
  • Hoelzel, Michael, et al. (author)
  • A Preclinical Model of Malignant Peripheral Nerve Sheath Tumor-like Melanoma Is Characterized by Infiltrating Mast Cells
  • 2016
  • In: Cancer Research. - 1538-7445. ; 76:2, s. 251-263
  • Journal article (peer-reviewed)abstract
    • Human melanomas exhibit considerable genetic, pathologic, and microenvironmental heterogeneity. Genetically engineered mice have successfully been used to model the genomic aberrations contributing to melanoma pathogenesis, but their ability to recapitulate the phenotypic variability of human disease and the complex interactions with the immune system have not been addressed. Here, we report the unexpected finding that immune cell-poor pigmented and immune cell-rich amelanotic melanomas developed simultaneously in Cdk4R24C-mutant mice upon melanocyte-specific conditional activation of oncogenic BrafV600E and a single application of the carcinogen 7,12-dimethylbenz(a) anthracene. Interestingly, amelanotic melanomas showed morphologic and molecular features of malignant peripheral nerve sheath tumors (MPNST). A bioinformatic cross-species comparison using a gene expression signature of MPNST-like mouse melanomas identified a subset of human melanomas with a similar histomorphology. Furthermore, this subset of human melanomas was found to be highly associated with a mast cell gene signature, and accordingly, mouse MPNST-like melanomas were also extensively infiltrated by mast cells and expressed mast cell chemoattractants similar to human counterparts. A transplantable mouse MPNST-like melanoma cell line recapitulated mast cell recruitment in syngeneic mice, demonstrating that this cell state can directly reconstitute the histomorphologic and microenvironmental features of primary MPNST-like melanomas. Our study emphasizes the importance of reciprocal, phenotype-dependent melanoma-immune cell interactions and highlights a critical role for mast cells in a subset of melanomas. Moreover, our BrafV600E-Cdk4R24C model represents an attractive system for the development of therapeutic approaches that can target the heterogeneous tumor microenvironment characteristic of human melanomas. (C) 2015 AACR.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 102
Type of publication
journal article (95)
conference paper (3)
doctoral thesis (2)
research review (2)
Type of content
peer-reviewed (98)
other academic/artistic (4)
Author/Editor
Jönsson, Göran B (97)
Staaf, Johan (43)
Borg, Åke (41)
Olsson, Håkan (31)
Ringnér, Markus (27)
Ingvar, Christian (21)
show more...
Vallon-Christersson, ... (18)
Lauss, Martin (16)
Bendahl, Pär Ola (12)
Harbst, Katja (12)
Baldetorp, Bo (9)
Lundgren, Lotta (9)
Jirström, Karin (8)
Arason, Adalgeir (8)
Hansson, Johan (7)
Cirenajwis, Helena (7)
Hayward, Nicholas K (7)
Barkardottir, Rosa B ... (7)
Nevanlinna, Heli (6)
Laurell, Thomas (6)
Marko-Varga, György (6)
Höglund, Mattias (6)
Welinder, Charlotte (6)
Saal, Lao (6)
Gruvberger, Sofia (6)
Agnarsson, Bjarni A. (6)
Rezeli, Melinda (6)
Gunnarsson, Haukur (6)
Johannsson, Oskar TH (6)
Tsao, Hensin (6)
Malmström, Per (5)
Jönsson, Per (5)
Carneiro, Ana (5)
Bishop, D Timothy (5)
Jönsson, Mats (5)
Grabau, Dorthe (5)
Loman, Niklas (5)
Planck, Maria (5)
Måsbäck, Anna (5)
Tuominen, Rainer (5)
Luts, Lena (5)
Jansson, Bo (5)
Fernö, Mårten (4)
Rosengren, Frida (4)
Oredsson, Stina (4)
Nilbert, Mef (4)
Gerdes, Anne-Marie (4)
Aoude, Lauren G. (4)
Harland, Mark (4)
Gruis, Nelleke A (4)
show less...
University
Lund University (100)
Karolinska Institutet (13)
Uppsala University (4)
University of Gothenburg (2)
Royal Institute of Technology (2)
Umeå University (1)
show more...
Linköping University (1)
Malmö University (1)
Chalmers University of Technology (1)
Högskolan Dalarna (1)
show less...
Language
English (102)
Research subject (UKÄ/SCB)
Medical and Health Sciences (98)
Natural sciences (3)
Engineering and Technology (3)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view