SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jørgensen Helene Bracht) "

Sökning: WFRF:(Jørgensen Helene Bracht)

  • Resultat 1-24 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Birkhofer, Klaus, et al. (författare)
  • Conventional agriculture and not drought alters relationships between soil biota and functions
  • 2021
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil biodiversity constitutes the biological pillars of ecosystem services provided by soils worldwide. Soil life is threatened by intense agricultural management and shifts in climatic conditions as two important global change drivers which are not often jointly studied under field conditions. We addressed the effects of experimental short-term drought over the wheat growing season on soil organisms and ecosystem functions under organic and conventional farming in a Swiss long term trial. Our results suggest that activity and community metrics are suitable indicators for drought stress while microbial communities primarily responded to agricultural practices. Importantly, we found a significant loss of multiple pairwise positive and negative relationships between soil biota and process-related variables in response to conventional farming, but not in response to experimental drought. These results suggest a considerable weakening of the contribution of soil biota to ecosystem functions under long-term conventional agriculture. Independent of the farming system, experimental and seasonal (ambient) drought conditions directly affected soil biota and activity. A higher soil water content during early and intermediate stages of the growing season and a high number of significant relationships between soil biota to ecosystem functions suggest that organic farming provides a buffer against drought effects.
  •  
2.
  • Bracht Jörgensen, Helene, et al. (författare)
  • Collembolan dietary specialisation on soil grown fungi
  • 2003
  • Ingår i: Biology and Fertility of Soils. - : Springer Science and Business Media LLC. - 0178-2762 .- 1432-0789. ; 39:1, s. 9-15
  • Tidskriftsartikel (refereegranskat)abstract
    • Preferences of six collembolans for eight species of microfungi grown in soil have been investigated. Collembolans (Folsomia fimetaria, Isotoma anglicana, Isotama notabilis, Heteromurus nitidus, Protaphorura armata, Pseudosinella alba) and microfungi where chosen for the experiment on the basis of their abundance and vertical distribution in an organically grown field where all organisms and soil were collected. Collembolans were tested with pairs of different species of microfungi and a control (sterile soil) in petri dishes and their position determined after 90 min. Based on the first two axes in a Principal Component Analysis we could identify two main feeding patterns in the collembolans: (1) their general acceptance of the fungi (the mean value of the preference indices for all eight fungi), and (2) their alternating preference for Cladosporium herbarum and Fusarium culmorum (high preference index for C. herbarum and low for F. culmorum or vice versa). The six collembolan species in our study combined these two feeding patterns with an intraspecific preference for the eight fungal species and seemed to minimise food competition among collembolans co-occurring in the same soil horizons. Our data suggest that differences in preference between collembolan species may help to explain the coexistence of many species in the same microhabitats of the soil.
  •  
3.
  • Bracht Jörgensen, Helene (författare)
  • Food selection and fitness optimisation in insects
  • 2002
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • To optimise fitness is a continuous process which assists species survival in changing environments. Choosing an optimal diet is an essential part of the optimisation process and a key element of optimal foraging theory. The relationship between food choice and fitness optimisation has been tested on three ground beetles and several collembolan species by using food items naturally occurring in the same habitat as the animals. The ground beetles Harpalus rufipes and Amara similata are considered being seed-eaters but can include insects in their diet in the field. An addition of insect species to a mixture of seeds did not improve beetle fitness, though a seed mixture was of a higher quality to the beetles than seeds of single plant species. However the beetles did not show a high degree of selectivity between the specific seed species and their choice was not always in agreement with the quality of the seeds. The collembolans, on the other hand, showed a high degree of selectivity and Folsomia fimetaria, Protaphorura armata and Heteromurus nitidus preferred fungi that optimised their growth, survival and fecundity. Folsomia fimetaria could even select the optimal food when a fungal species was grown in different soil substrates. The high degree of selectivity corresponding to food quality that was seen in the collembolans might be due to a production of fungal odour that can be detected by the collembolans. Plants producing proteinase inhibitors experience reduced attacks by herbivores thus the effect on predators feeding on the herbivores was studied. The herbivorous caterpillar Helicoverpa armigera was fed an artificial diet containing a proteinase inhibitor and the ground beetle Harpalus affinis was fed with H. armigera. H. affinis reduced its feeding when the caterpillars had been fed the proteinase inhibitor containing diet. This indicates that changes in food quality at the plant trophic level cascaded to the predator trophic level. In spite of the many laboratory studies we still lack knowledge of selection of food in the field for this insects. A PCR-based method to detect DNA of ingested food species has been developed. Diversity of fungi found in the gut of collembolans was low compared to that of whole animals. This might be due to the dissection method where the head with mouthparts and the uppermost part of the gut was discharged, which presumably contains most undigested fungal material. This method will make it possible to study food selective behaviour of cryptic soil organisms in the future.
  •  
4.
  • Bracht Jørgensen, Helene, et al. (författare)
  • Life-history traits of soil collembolans in relation to food quality
  • 2008
  • Ingår i: Applied Soil Ecology. - : Elsevier BV. - 0929-1393. ; 38:2, s. 146-151
  • Tidskriftsartikel (refereegranskat)abstract
    • Preference studies of many different collembolan species have categorised collembolans being selective in their food choice. To clarify whether collembolan food selectivity is related to fitness parameters, three species, Folsomia fimetaria, Protaphorura armata and Heteromurus nitidus, were fed three fungal species, Alternaria infectoria, Mucor hiemalis and Penicillium hordei, representing fungi of high, medium and low preference. The fungal diets were grown on soil and collembolan growth, survival and fecundity were measured. The fungus A. infectoria supported growth, survival and reproduction best in all three species of collembolans, while the fungus P. hordei was of low food quality. M. hiemalis was of medium quality and F. fimetaria was the only collembolan reproducing on M. hiemalis. F. fimetaria favoured reproduction over growth when confined to M. hiemalis. When P. armata was fed M. hiemalis it reached a size where reproduction normally starts, but no young were produced. This suggests that M. hiemalis lacks nutrients necessary for reproduction. H. nitidus did not perform well on any of the fungi offered, which were generally of low food quality for this species. In this study, where the fungal growth substrate is soil, there is a clear relationship between collembolan fitness and their food choice in contrast to some other studies where substrates optimised for fungal growth had been used. We show that specific fungal species are important for resource allocation to growth or reproduction and closely connected with food choice. Further, we argue that natural fungal growth substrates, such as soil, should be used in experiments of this kind.
  •  
5.
  • Bracht Jörgensen, Helene, et al. (författare)
  • Organic amendment and fungal species in combination can alter collembolan fitness
  • 2013
  • Ingår i: Soil Biology & Biochemistry. - : Elsevier BV. - 0038-0717. ; 65, s. 316-321
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic material of different origin is commonly used as fertiliser in agricultural practices. Clover and wheat straw are here used to determine the importance of organic amendment for population development of fungal feeding collembolans. Two fungal species, Alternaria infectoria and Mucor hiemalis, were inoculated in three growth substrates, clover amended soil, straw amended soil and non-amended soil, where both amendments and the soil originated from agricultural fields. Food choice as well as growth rate, survival and fecundity of the collembolan, Folsomia fimetaria, were measured when fed fungi grown in the three substrates. The type of amendment altered food quality of the two fungi, which was reflected in the collembolan food preference. Growth and fecundity of F. fimetaria were enhanced when fed M. hiemalis grown in both types of plant amended soils. F. fimetaria had a slightly higher fitness when fed A. infectoria grown in the straw amended soil, whereas it's fitness decreased when fed with A. infectoria grown in clover amended soil. We also examined how the predatory mite, Hypoaspis aculeifer, was attracted towards the two fungi as it uses the fungal odour as a potential cue of a prey habitat. H. aculeifer was attracted to both fungi when they were grown in clover amended soil where fungal growth also was observed to be massive. Thus, we conclude that amendment applications can cause effects that cascade through several trophic levels. (C) 2013 Elsevier Ltd. All rights reserved.
  •  
6.
  • Bracht Jörgensen, Helene, et al. (författare)
  • Selective foraging of fungi by collembolans in soil
  • 2005
  • Ingår i: Biology letters. - : The Royal Society. - 1744-9561 .- 1744-957X. ; 1:2, s. 243-246
  • Tidskriftsartikel (refereegranskat)abstract
    • Soils contain highly diverse communities of microorganisms and invertebrates. The trophic interactions between these species are largely unknown. Collembolans form an abundant part of the invertebrate community in soils. A prevailing view is that soil collembolans are generalist feeders on fungi, lichens, fragmented litter and bacteria. However, in laboratory food choice experiments, it has been shown that collembolans preferentially select certain taxa of fungi. To examine this apparent contradiction, we developed a molecular technique based on the analysis of 18S ribosomal DNA (rDNA) sequences to explore the diversity of fungi in soils and in the guts of collembolans. We report that the diversity of fungi found in the natural soil was 33 times higher than that in the guts of the collembolan Protaphorura armata. The data support the view that collembolan species can be highly selective when foraging on fungi in soils.
  •  
7.
  • De Vries, Franciska T., et al. (författare)
  • Disentangling plant and soil microbial controls on carbon and nitrogen loss in grassland mesocosms
  • 2015
  • Ingår i: Journal of Ecology. - : Wiley. - 1365-2745 .- 0022-0477. ; 103:3, s. 629-640
  • Tidskriftsartikel (refereegranskat)abstract
    • It is well known that plant-soil interactions play an important role in determining the impact of global change phenomena on biodiversity and ecosystem functioning. Little is known, however, about the individual and relative importance for carbon (C) and nitrogen (N) cycling of non-random changes in plant and soil communities that result from global change phenomena, such as fertilization and agricultural intensification. We set up a field-based mesocosm experiment in which we re-inoculated soil with contrasting microbial communities taken from extensively managed and from intensively managed grasslands. In a full-factorial design, we subsequently established plant communities representative of intensively and extensively managed grasslands and imposed a fertilization treatment. We then measured plant biomass and diversity, and leaching of C and N as key measures of C and N loss. We hypothesized that non-random changes in both microbial and plant communities would impact C and N leaching, but via different mechanisms. We predicted that plant communities representative of extensively managed grassland would reduce C and N leaching directly through increased water or N uptake, or indirectly via promoting microbial communities that immobilize C and N, whereas plant communities of intensively managed grassland would have the opposite effect. We also hypothesized that microbial communities of extensively managed grassland would feed back positively to plant diversity and that matching' plant and microbial communities would reduce C and N leaching. We found that both plant and microbial communities from extensively managed grassland reduced C and N leaching, especially when matched'. Plant community effects on C and N leaching operated directly through root C inputs and N uptake, rather than through changes in soil microbial communities. In contrast, microbial communities modified C and N leaching both directly by immobilization and indirectly through modifying plant community composition. Synthesis. Our results show that changes in plant and microbial communities both individually and interactively modify C and N loss from grasslands. Moreover, our results suggest that soil microbial communities typical of extensively managed grassland might counteract, or delay, the negative consequences of fertilization on plant diversity and ecosystem functioning.
  •  
8.
  • de Vries, Franciska T., et al. (författare)
  • Soil food web properties explain ecosystem services across European land use systems
  • 2013
  • Ingår i: Proceedings of the National Academy of Sciences. - Washington, DC : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 110:35, s. 14296-14301
  • Tidskriftsartikel (refereegranskat)abstract
    • Intensive land use reduces the diversity and abundance of many soil biota, with consequences for the processes that they govern and the ecosystem services that these processes underpin. Relationships between soil biota and ecosystem processes have mostly been found in laboratory experiments and rarely are found in the field. Here, we quantified, across four countries of contrasting climatic and soil conditions in Europe, how differences in soil food web composition resulting from land use systems (intensive wheat rotation, extensive rotation, and permanent grassland) influence the functioning of soils and the ecosystem services that they deliver. Intensive wheat rotation consistently reduced the biomass of all components of the soil food web across all countries. Soil food web properties strongly and consistently predicted processes of C and N cycling across land use systems and geographic locations, and they were a better predictor of these processes than land use. Processes of carbon loss increased with soil food web properties that correlated with soil C content, such as earthworm biomass and fungal/bacterial energy channel ratio, and were greatest in permanent grassland. In contrast, processes of N cycling were explained by soil food web properties independent of land use, such as arbuscular mycorrhizal fungi and bacterial channel biomass. Our quantification of the contribution of soil organisms to processes of C and N cycling across land use systems and geographic locations shows that soil biota need to be included in C and N cycling models and highlights the need to map and conserve soil biodiversity across the world.
  •  
9.
  • Dänhardt, Juliana, et al. (författare)
  • Ekosystemtjänster i det skånska jordbrukslandskapet
  • 2013
  • Rapport (populärvet., debatt m.m.)abstract
    • Jordbrukslandskapet tillhandahåller ekosystemtjänster som utgör förutsättningen för en uthållig jordbruksproduktion och är till nytta för samhället i stort. Bakom dessa finns ekologiska processer som beror av samspel mellan en mångfald av organismer. Skånes jordbruk har genomgått betydande förändringar som förändrat landskapet och livsmiljön för många av dessa. För att bevara och förvalta ekosystemtjänsterna krävs en förståelse för sambanden mellan jordbruk, landskap och ekosystemprocesser. Rapporten beskriver ekologiska processer som ligger till grund för några viktiga ekosystemtjänster i Skånes jordbrukslandskap och visar betydelsen av biologisk mångfald för deras funktion. Där så är möjligt beskrivs hur de kan värderas. Slutligen redovisas praktiska åtgärder som gynnar dem. Rapporten visar att ekosystemtjänster inte enkelt går att ersätta med teknologiska lösningar, utan att förvaltning av dessa tjänster lönar sig. Detta kräver ökad ekologisk kunskap och anpassade styrmedel vilket kräver ökat samråd och regelbunden återkoppling mellan lantbrukare, myndigheter och forskare. Förhoppningen är att rapporten, framtagen av Lunds universitet och Region Skåne, inspirerar till detta!
  •  
10.
  • Gagic, Vesna, et al. (författare)
  • Combined effects of agrochemicals and ecosystem services on crop yield across Europe
  • 2017
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 20:11, s. 1427-1436
  • Tidskriftsartikel (refereegranskat)abstract
    • Simultaneously enhancing ecosystem services provided by biodiversity below and above ground is recommended to reduce dependence on chemical pesticides and mineral fertilisers in agriculture. However, consequences for crop yield have been poorly evaluated. Above ground, increased landscape complexity is assumed to enhance biological pest control, whereas below ground, soil organic carbon is a proxy for several yield-supporting services. In a field experiment replicated in 114 fields across Europe, we found that fertilisation had the strongest positive effect on yield, but hindered simultaneous harnessing of below- and above-ground ecosystem services. We furthermore show that enhancing natural enemies and pest control through increasing landscape complexity can prove disappointing in fields with low soil services or in intensively cropped regions. Thus, understanding ecological interdependences between land use, ecosystem services and yield is necessary to promote more environmentally friendly farming by identifying situations where ecosystem services are maximised and agrochemical inputs can be reduced.
  •  
11.
  • García-Palacios, Pablo, et al. (författare)
  • Crop traits drive soil carbon sequestration under organic farming
  • 2018
  • Ingår i: Journal of Applied Ecology. - Chichester : Wiley. - 0021-8901 .- 1365-2664. ; 55:5, s. 2496-2505
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic farming (OF) enhances top soil organic carbon (SOC) stocks in croplands compared with conventional farming (CF), which can contribute to sequester C. As farming system differences in the amount of C inputs to soil (e.g. fertilization and crop residues) are not enough to explain such increase, shifts in crop residue traits important for soil C losses such as litter decomposition may also play a role. To assess whether crop residue (leaf and root) traits determined SOC sequestration responses to OF, we coupled a global meta-analysis with field measurements across a European-wide network of sites. In the meta-analysis, we related crop species averages of leaf N, leaf-dry matter content, fine-root C and N, with SOC stocks and sequestration responses in OF vs. CF. Across six European sites, we measured the management-induced changes in SOC stocks and leaf litter traits after long-term ecological intensive (e.g. OF) vs. CF comparisons. Our global meta-analysis showed that the positive OF-effects on soil respiration, SOC stocks, and SOC sequestration rates were significant even in organic farms with low manure application rates. Although fertilization intensity was the main driver of OF-effects on SOC, leaf and root N concentrations also played a significant role. Across the six European sites, changes towards higher leaf litter N in CF also promoted lower SOC stocks. Our results highlight that crop species displaying traits indicative of resource-acquisitive strategies (e.g. high leaf and root N) increase the difference in SOC between OF and CF. Indeed, changes towards higher crop residue decomposability was related with decreased SOC stocks under CF across European sites. Synthesis and applications. Our study emphasizes that, with management, changes in crop residue traits contribute to the positive effects of organic farming (OF) on soil carbon sequestration. These results provide a clear message to land managers: the choice of crop species, and more importantly their functional traits (e.g. leave and root nitrogen), should be considered in addition to management practices and climate, when evaluating the potential of OF for climate change mitigation.
  •  
12.
  • Haddaway, Neal Robert, et al. (författare)
  • How does tillage intensity affect soil organic carbon? A systematic review protocol
  • 2016
  • Ingår i: Environmental Evidence. - : Springer Science and Business Media LLC. - 2047-2382. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Soils contain the greatest terrestrial carbon (C) pool on the planet. Since approximately 12 % of soil C is held in cultivated soils, management of these agricultural areas has a huge potential to affect global carbon cycling; acting sometimes as a sink but also as a source. Tillage is one of the most important agricultural practices for soil management and has been traditionally undertaken to mechanically prepare soils for seeding and minimize effects of weeds. It has been associated with many negative impacts on soil quality, most notably a reduction in soil organic carbon (SOC), although still a matter of considerable debate, depending on factors such as depth of measurement, soil type, and tillage method. No tillage or reduced intensity tillage are frequently proposed mitigation measures for preservation of SOC and improvement of soil quality, for example for reducing erosion. Whilst several reviews have demonstrated benefits to C conservation of no till agriculture over intensive tillage, the general picture for reduced tillage intensity is unclear. This systematic review proposes to synthesise an extensive body of evidence, previously identified through a systematic map. Methods: This systematic review is based on studies concerning tillage collated in a recently completed systematic map on the impact of agricultural management on SOC restricted to the warm temperate climate zone (i.e. boreo-temperate). These 311 studies were identified and selected systematically according to CEE guidelines. An update of the original search will be undertaken to identify newly published academic and grey literature in the time since the original search was performed in September 2013. Studies will be critically appraised for their internal and external validity, followed by full data extraction (meta-data describing study settings and quantitative study results). Where possible, studies will be included in meta-analyses examining the effect of tillage reduction ('moderate' (i.e. shallow) and no tillage relative to 'intensive' tillage methods such as mouldboard ploughing, where soil is turned over throughout the soil profile). The implications of the findings will be discussed in terms of policy, practice and research along with a discussion of the nature of the evidence base.
  •  
13.
  • Haddaway, Neal R., et al. (författare)
  • What are the effects of agricultural management on soil organic carbon in boreo-temperate systems?
  • 2015
  • Ingår i: Environmental Evidence. - : Springer Science and Business Media LLC. - 2047-2382. ; 4
  • Forskningsöversikt (refereegranskat)abstract
    • Background: Soils contain the largest stock of organic carbon (C) in terrestrial ecosystems and changes in soil C stocks may significantly affect atmospheric CO2. A significant part of soil C is present in cultivated soils that occupy about 35 % of the global land surface. Agricultural intensification has led to practices that may decrease soil organic carbon (SOC), and agricultural management has the potential to be a powerful tool for climate change mitigation and increased soil fertility through SOC sequestration. Here, we systematically map evidence relating to the impacts of agricultural management on SOC in arable systems of the warm temperate and snow climate zones (subset of temperate and continental climates: Köppen–Geiger Classification). Methods: Seventeen academic citation databases, 3 search engines and 25 organisational websites were searched for literature (academic and grey) using search strings translated into a range of languages relevant to the included geographical scope of the topic. Stakeholders were also contacted with requests for evidence. Bibliographic checking of 127 relevant reviews was undertaken to check for missing articles. Screening for relevance against predefined inclusion criteria was undertaken at title, abstract and full text levels according to a published protocol. All relevant studies were coded in a meta-database describing the citation, study settings, methods and quantitative data available (without extraction of the study findings). A basic critical appraisal of included studies was also performed. A geographical information system (GIS) presenting the map database on a physical, online map was also produced. Results: A total of 735 studies from 553 articles was included in the systematic map database. Studies investigated one or more of five broad categories of interventions: amendments (286 studies), crop rotations (238), fertilisers (307), tillage (306), and multiple interventions (55). Studies were identified from across the includible climate zones, with the notable underrepresentation from Russia. The majority of studies employed only point sampling of SOC, low levels of true spatial replication and moderate study periods (i.e. 10–20 years). Missing key methodological information was found in 28 % of studies. Conclusions: Long-term study sites identified in this map provide a useful addition to existing databases of longterm experiments (LTEs). The identification of knowledge gaps, such as studies from Russia, also identify a need for improved cataloguing or reporting of existing and on-going research. This systematic map database represents a useful resource for decision-makers wishing to identify knowledge gaps warranting further primary research, knowledge gluts warranting further secondary research, and deficiencies and best practice in research methodology. In addition to the systematic map database, we have also produced two further resources: (1) a database of LTE sites investigating agricultural management and SOC, and (2) a database of reviews and meta-analyses. To our knowledge, this is the first systematic review or map that utilises a GIS for presentation of an evidence base, which we believe substantially increases the utility of the map outputs.
  •  
14.
  • Haddaway, Neal Robert, et al. (författare)
  • Which agricultural management interventions are most influential on soil organic carbon (using time series data)?
  • 2016
  • Ingår i: Environmental Evidence. - : Springer Science and Business Media LLC. - 2047-2382. ; 5:1
  • Forskningsöversikt (refereegranskat)abstract
    • Background: Loss of soil organic carbon (SOC) from agricultural land is identified as one of the major threats to soils, as it influences both fertility and the production of ecosystem services from agriculture. Losses of SOC across regions are often determined by monitoring in different land use systems. Results from agricultural field experiments can reveal increasing SOC stocks after implementation of specific management practices compared to a control, though in time series experiments the relative rate of change is often negative and implying an overall loss. Long-term agricultural field experiments are indispensable for quantifying absolute changes in SOC stocks under different management regimes. Since SOC responses are seldom linear over time, time series data from these experiments are particularly valuable. Methods: This systematic review is based on studies reporting time series data collated in a recently completed systematic map on the topic restricted to the warm temperate climate zone and the snow climate zone. These 53 studies were identified and selected systematically according to CEE guidelines. An update of the original search for studies will be repeated using Web of Science and Google Scholar to include newly published academic and grey literature in the time since the original search was performed in September 2013. Studies will be subject to critical appraisal of the internal and external validity, followed by full data extraction (meta-data describing study settings and quantitative study results). Where possible, studies will be included in a quantitative synthesis using time series meta-analytical approaches. The implications of the meta-analytical findings will be discussed in terms of policy, practice and research along with a discussion of the nature of the evidence base.
  •  
15.
  • Heijboer, Amber, et al. (författare)
  • Plant biomass, soil microbial community structure and nitrogen cycling under different organic amendment regimes; a 15N tracer-based approach
  • 2016
  • Ingår i: Applied Soil Ecology. - : Elsevier BV. - 0929-1393. ; 107, s. 251-260
  • Tidskriftsartikel (refereegranskat)abstract
    • Sustainable agriculture requires nutrient management options that lead to a profitable crop yield with relatively low nitrogen (N) losses to the environment. We studied whether the addition of contrasting organic amendments together with inorganic fertilizer can promote both requirements simultaneously. In particular we studied how the chemical composition of organic amendments affects the biomass, activity and composition of the soil microbial community and subsequently carbon (C) and N mineralization, microbial N immobilization and plant growth and nutrient uptake. In a pot experiment, Brussels sprouts (Brassica oleracea, cvar. Cyrus) were grown on arable soil, mixed with 15N-labelled mineral fertilizer and different kinds of organic amendments (cattle manure solid fraction, maize silage, lucerne silage, wheat straw) differing in C:N ratio and lignin content. After 69 and 132 days, destructive sampling took place to assess the effects of the different treatments on soil microbial biomass (microscopic measurements), microbial community composition (phospholipid fatty acid profiles), soil microbial activity (14C-leucine incorporation), C and N mineralization, plant biomass and 15N retrieval in soil pools, microbial biomass and plant biomass. Addition of organic amendments increased soil microbial biomass, activity and fungal/bacterial ratio and created distinct microbial community compositions, whereby high C:N ratio organic amendments had stronger effects compared to low C:N ratio amendments. Structural equation modelling showed that higher values of soil microbial activity were associated with increased N mineralization rates, increased plant biomass and plant 15N uptake, while microbial 15N immobilization was associated with soil microbial community composition. The outcomes of this study highlight the importance of the chemical composition and the amount of the organic amendments for finding a balance between plant N uptake, microbial N immobilization and N retention in labile and stable soil pools through the effects on the composition and activity of the soil microbial community. The results provide insights that can be used in designing combined input (nutrient and organic) nutrient management strategies for a more sustainable agriculture.
  •  
16.
  • Hättenschwiler, Stephan, et al. (författare)
  • Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest
  • 2010
  • Ingår i: Journal of Ecology. - : Wiley. - 1365-2745 .- 0022-0477. ; 98:4, s. 754-763
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Ecological stoichiometry predicts important control of the relative abundance of the key elements carbon (C), nitrogen (N) and phosphorus (P) on trophic interactions. In a nutrient-poor Amazonian lowland rain forest of French Guiana, we tested the hypothesis that decomposers exploit stoichiometrically diverse plant litter more efficiently, resulting in faster litter decomposition compared to litter with a uniform stoichiometry. 2. In a field experiment in the presence or absence of soil macrofauna, we measured litter mass loss, and N and P dynamics from all possible combinations of leaf litter from four common tree species which were distinctly separated along a C:N and along a N:P gradient. 3. Mean litter mass remaining after 204†days of field exposure varied between 25.2% and 71.3% among litter treatments. Fauna increased litter mass loss by 18%, N loss by 21% and P loss by 14%. Litter species richness had no effect on litter mass loss or nutrient dynamics. In contrast, litter mass and nutrient losses increased with increasing stoichiometric dissimilarity of litter mixtures in presence of fauna, suggesting faster decomposition of a stoichiometrically more heterogeneous litter. 4. However, the effect of stoichiometric dissimilarity was smaller than the strong C quality related litter composition effect and disappeared in the absence of fauna. Increasing proportions of litter that is relatively rich in accessible C compounds (non-structural carbohydrates, phenolics) and relatively poor in recalcitrant C (condensed tannins, lignin), correlated best with litter mass loss irrespective of fauna presence. No correlation was found for any of the nutrient related litter quality parameters and decomposition. 5.Synthesis. Our results suggest that Amazonian decomposer communities studied here are primarily limited by energy, and only secondarily by litter stoichiometry. Tropical tree species might thus influence decomposers and detritivores by the production of litter of specific C quality with potentially important feedback effects on ecosystem nutrient dynamics and availability.
  •  
17.
  • Kundel, Dominika, et al. (författare)
  • Effects of simulated drought on biological soil quality, microbial diversity and yields under long-term conventional and organic agriculture
  • 2020
  • Ingår i: FEMS Microbiology Ecology. - : Oxford University Press (OUP). - 1574-6941 .- 0168-6496. ; 96:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Drought and agricultural management influence soil microorganisms with unknown consequences for the functioning of agroecosystems. We simulated drought periods in organic (biodynamic) and conventional wheat fields and monitored effects on soil water content, microorganisms and crops. Above the wilting point, water content and microbial respiration were higher under biodynamic than conventional farming. Highest bacterial and fungal abundances were found in biodynamically managed soils, and distinct microbial communities characterised the farming systems. Most biological soil quality parameters and crop yields were only marginally affected by the experimental drought, except for arbuscular mycorrhizal fungi (AMF), which increased in abundance under the experimental drought in both farming systems. AMF were further strongly promoted by biodynamic farming resulting in almost three times higher AMF abundance under experimental drought in the biodynamic compared with the conventional farming system. Our data suggest an improved water storage capacity under biodynamic farming and confirms positive effects of biodynamic farming on biological soil quality. The interactive effects of the farming system and drought may further be investigated under more substantial droughts. Given the importance of AMF for the plant's water supply, more in-depth studies on AMF may help to clarify their role for yields under conditions predicted by future climate scenarios.
  •  
18.
  • Land, Magnus, et al. (författare)
  • How do selected crop rotations affect soil organic carbon in boreo-temperate systems? A systematic review protocol
  • 2017
  • Ingår i: Environmental Evidence. - : Springer Science and Business Media LLC. - 2047-2382. ; 6:1
  • Forskningsöversikt (refereegranskat)abstract
    • Background: Soils are important global carbon pools that are under threat from intensive land use through a variety of agricultural practices. Sustainable management of agricultural soils may have the potential to mitigate climate change through increased carbon sequestration and increase their fertility. Among management practices to increase carbon sequestration, crop rotation designs have often been tested on yield effects in long-term agricultural experiments. However, in these studies, soil organic carbon (SOC) was monitored but not always the key objective. Thus, here we provide a method for a systematic review to test the effects of common crop rotations on SOC sequestration to provide evidence on the most sustainable management regimes that can promote SOC storage. Methods: This systematic review incorporates studies concerning selected crop rotations (rotations-vs-monocultures, legumes-vs-no legumes, and perennials-vs-annuals) collated in a recently completed systematic map on the effect of agricultural management on SOC, restricted to boreo-temperate systems (i.e., the warm temperate climate zone). Some 208 studies relevant for this systematic review were identified in the systematic map. An update of the original search (September 2013) will be undertaken to identify newly published academic and grey literature. Studies will be critically appraised for their internal and external validity, followed by full data extraction (meta-data describing study settings and quantitative study results). Where possible, studies will be included in meta-analyses examining the effects of the different rotational practices. Implications of the findings will be discussed in terms of policy, practice and research, and the nature of the evidence base.
  •  
19.
  • Leps, J, et al. (författare)
  • Long-term effectiveness of sowing high and low diversity seed mixtures to enhance plant community development on ex-arable fields
  • 2007
  • Ingår i: Applied Vegetation Science. - 1402-2001. ; 10:1, s. 97-110
  • Tidskriftsartikel (refereegranskat)abstract
    • Questions: How is succession on ex-arable land affected by sowing high and low diversity mixtures of grassland species as compared to natural succession? How long do effects persist? Location: Experimental plots installed in the Czech Republic, The Netherlands, Spain, Sweden and the United Kingdom. Methods: The experiment was established on ex-arable land, with five blocks, each containing three 10 m x 10 m experiment tal plots: natural colonization, a low- (four species) and high-diversity (15 species) seed mixture. Species composition and biomass was followed for eight years. Results: The sown plants considerably affected the whole successional pathway and the effects persisted during the whole eight year period. Whilst the proportion of sown species (characterized by their cover) increased during the study period, the number of sown species started to decrease from the third season onwards. Sowing caused suppression of natural colonizing species, and the sown plots had more biomass. These effects were on average larger in the high diversity mixtures. However, the low diversity replicate sown with the mixture that produced the largest biomass or largest suppression of natural colonizers fell within the range recorded at the five replicates of the high diversity plots. The natural colonization plots usually had the highest total species richness and lowest productivity at the end of the observation period. Conclusions: The effect of sowing demonstrated dispersal limitation as a factor controlling the rate of early secondary succession. Diversity was important primarily for its 'insurance effect': the high diversity mixtures were always able to compensate for the failure of some species.
  •  
20.
  • Martínez-García, Laura B., et al. (författare)
  • Organic management and cover crop species steer soil microbial community structure and functionality along with soil organic matter properties
  • 2018
  • Ingår i: Agriculture, Ecosystems and Environment. - : Elsevier BV. - 0167-8809. ; 263, s. 7-17
  • Tidskriftsartikel (refereegranskat)abstract
    • It is well recognized that organic soil management stimulates bacterial biomass and activity and that including cover crops in the rotation increases soil organic matter (SOM). Yet, to date the relative impact of different cover crop species and organic vs. non-organic soil management on soil bacteria and fungi and on SOM quantity and quality remains to be tested. We used a long-term (10 years) full-factorial field experiment to test the combined effects of organic vs. conventional soil management with different cover crop species (oat or rye) and the legacy effects of seven soil health treatments (SHTs: treatments with compost, chitin, marigold, grass–clover, biofumigation or anaerobic soil disinfestation (ASD), and fallow as control) on microbial community biomass, structure and catabolic activity and on SOM quantity and quality (dissolved organic carbon (DOC), aromaticity and water repellency). Microbial community traits were assessed using PLFA/NLFA analyses and multi-substrate induced respiration. We found that organic soil management enhanced total microbial biomass by increasing bacterial, saprotrophic and arbuscular mycorrhizal fungal biomass; and increased total microbial catabolic activity, associated with maintaining high microbial efficiency (low qCO2). Effects of organic management were amplified by oat as cover crop, which enhanced the abundance of saprotrophic fungi resulting in a higher fungal:bacterial ratio. Total SOM concentration was similar among treatments, however the most easily accessible fraction, i.e. DOC, was higher in organic compared to conventional soils. Also, the aromaticity of the DOC was lower in organic than in conventional systems, which was associated with lower water repellency. There was a legacy effect of SHTs on fungal:bacterial ratio in that chitin and marigold showed higher fungal:bacterial ratio compared to compost, biofumigation and ASD even 6 years after the last application. We conclude that organic soil management enhances the abundance of all microbial groups and their total catabolic activity, associated with a higher concentration and lower aromaticity of dissolved organic matter. These effects can be enlarged by the growth of specific cover crops and the application of certain soil health treatments.
  •  
21.
  • Morriën, Elly, et al. (författare)
  • Soil networks become more connected and take up more carbon as nature restoration progresses
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil organisms have an important role in aboveground community dynamics and ecosystem functioning in terrestrial ecosystems. However, most studies have considered soil biota as a black box or focussed on specific groups, whereas little is known about entire soil networks. Here we show that during the course of nature restoration on abandoned arable land a compositional shift in soil biota, preceded by tightening of the belowground networks, corresponds with enhanced efficiency of carbon uptake. In mid- and long-term abandoned field soil, carbon uptake by fungi increases without an increase in fungal biomass or shift in bacterial-to-fungal ratio. The implication of our findings is that during nature restoration the efficiency of nutrient cycling and carbon uptake can increase by a shift in fungal composition and/or fungal activity. Therefore, we propose that relationships between soil food web structure and carbon cycling in soils need to be reconsidered.
  •  
22.
  • Stone, D., et al. (författare)
  • A method of establishing a transect for biodiversity and ecosystem function monitoring across Europe
  • 2016
  • Ingår i: Applied Soil Ecology. - : Elsevier BV. - 0929-1393 .- 1873-0272. ; 97, s. 3-11
  • Tidskriftsartikel (refereegranskat)abstract
    • The establishment of the range of soil biodiversity found within European soils is needed to guide EU policy development regarding the protection of soil. Such a base-line should be collated from a wide-ranging sampling campaign to ensure that soil biodiversity from the majority of soil types, land-use or management systems, and European climatic (bio-geographical zones) were included. This paper reports the design and testing of a method to achieve the large scale sampling associated with the establishment of such a baseline, carried out within the remit of the EcoFINDERS project, and outlines points to consider when such a task is undertaken. Applying a GIS spatial selection process, a sampling campaign was undertaken by 13 EcoFINDERS partners across 11 countries providing data on the range of indicators of biodiversity and ecosystem functions including; micro and meso fauna biodiversity, extracellular enzyme activity, PLEA and community level physiological profiling (MicroResp (TM) and Biolog (TM)). Physical, chemical and bio-geographical parameters of the 81 sites sampled were used to determine whether the model predicted a wide enough range of sites to allow assessment of the biodiversity indicators tested. Discrimination between the major bio-geographical zones of Atlantic and Continental was possible for all land-use types. Boreal and Alpine zones only allowed discrimination in the most common land-use type for that area e.g. forestry and grassland sites, respectively, while the Mediterranean zone did not have enough sites sampled to draw conclusions across all land-use types. The method used allowed the inclusion of a range of land-uses in both the model prediction stage and the final sites sampled. The establishment of the range of soil biodiversity across Europe is possible, though a larger targeted campaign is recommended. The techniques applied within the EcoFINDERS sampling would be applicable to a larger campaign. (C) 2015 Elsevier B.V. All rights reserved.
  •  
23.
  • Söderström, Bo, et al. (författare)
  • What are the effects of agricultural management on soil organic carbon (SOC) stocks?
  • 2014
  • Ingår i: Environmental Evidence. - : Springer Science and Business Media LLC. - 2047-2382. ; 3
  • Forskningsöversikt (refereegranskat)abstract
    • Background: Changes in soil organic carbon (SOC) stocks significantly influence the atmospheric C concentration. Agricultural management practices that increase SOC stocks thus may have profound effects on climate mitigation. Additional benefits include higher soil fertility since increased SOC stocks improve the physical and biological properties of the soil. Intensification of agriculture and land-use change from grasslands to croplands are generally known to deplete SOC stocks. The depletion is exacerbated through agricultural practices with low return of organic material and various mechanisms, such as oxidation/mineralization, leaching and erosion. However, a systematic review comparing the efficacy of different agricultural management practices to increase SOC stocks has not yet been produced. Since there are diverging views on this matter, a systematic review would be timely for framing policies not only nationally in Sweden, but also internationally, for promoting long-term sustainable management of soils and mitigating climate change. Methods: The systematic review will examine how changes in SOC are affected by a range of soil-management practices relating to tillage management, addition of crop residues, manure or other organic -wastes-, and different crop rotation schemes. Within the warm temperate and the snow climate zones, agricultural management systems in which wheat, barley, rye, oats, silage maize or oilseed rape can grow in the crop rotation will be selected. The review will exclusively focus on studies conducted over at least 10 years. Searches will be made in 15 publication databases as well as in specialist databases. Articles found will be screened using inclusion/exclusion criteria at title, abstract and full-text levels, and screening consistency will be evaluated using Kappa tests. Data from articles that remain after critical appraisal will be extracted using a predefined spreadsheet. Subgroup analyses will be undertaken to elucidate statistical relationships that are specific to particular type of management interventions. Meta-regression within subgroups will be performed as well as sensitivity analysis to investigate the impact of removing groups of studies with low or unclear quality.
  •  
24.
  • Tsiafouli, Maria A., et al. (författare)
  • Intensive agriculture reduces soil biodiversity across Europe
  • 2015
  • Ingår i: Global Change Biology. - West Sussex : Wiley. - 1354-1013 .- 1365-2486. ; 21:2, s. 973-985
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil biodiversity plays a key role in regulating the processes that underpin the delivery of ecosystem goods and services in terrestrial ecosystems. Agricultural intensification is known to change the diversity of individual groups of soil biota, but less is known about how intensification affects biodiversity of the soil food web as a whole, and whether or not these effects may be generalized across regions. We examined biodiversity in soil food webs from grasslands, extensive, and intensive rotations in four agricultural regions across Europe: in Sweden, the UK, the Czech Republic and Greece. Effects of land-use intensity were quantified based on structure and diversity among functional groups in the soil food web, as well as on community-weighted mean body mass of soil fauna. We also elucidate land-use intensity effects on diversity of taxonomic units within taxonomic groups of soil fauna. We found that between regions soil food web diversity measures were variable, but that increasing land-use intensity caused highly consistent responses. In particular, land-use intensification reduced the complexity in the soil food webs, as well as the community-weighted mean body mass of soil fauna. In all regions across Europe, species richness of earthworms, Collembolans, and oribatid mites was negatively affected by increased land-use intensity. The taxonomic distinctness, which is a measure of taxonomic relatedness of species in a community that is independent of species richness, was also reduced by land-use intensification. We conclude that intensive agriculture reduces soil biodiversity, making soil food webs less diverse and composed of smaller bodied organisms. Land-use intensification results in fewer functional groups of soil biota with fewer and taxonomically more closely related species. We discuss how these changes in soil biodiversity due to land-use intensification may threaten the functioning of soil in agricultural production systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-24 av 24
Typ av publikation
tidskriftsartikel (18)
forskningsöversikt (4)
rapport (1)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (22)
övrigt vetenskapligt/konstnärligt (1)
populärvet., debatt m.m. (1)
Författare/redaktör
Hedlund, Katarina (17)
Bracht Jørgensen, He ... (17)
Birkhofer, Klaus (5)
Kätterer, Thomas (5)
Isberg, Per-Erik (3)
D'Hertefeldt, Tina (3)
visa fler...
Truu, Jaak (2)
Söderström, Bo (2)
Wolters, Volkmar (2)
Fliessbach, Andreas (2)
Schmidt, Olaf (1)
Johansson, Tomas (1)
Carvalho, F (1)
Laudon, Hjalmar (1)
Zupan, M. (1)
Smith, Henrik G. (1)
Rundlöf, Maj (1)
Bommarco, Riccardo (1)
Nilsson, Lovisa (1)
Brönmark, Christer (1)
Tunlid, Anders (1)
Smith, Henrik (1)
Griffiths, R. (1)
Kleijn, David (1)
Marini, Lorenzo (1)
Potts, Simon G. (1)
Garratt, Michael P.D ... (1)
Kovács-Hostyánszki, ... (1)
Martin, Emily A (1)
Canbäck, Björn (1)
Steffan-Dewenter, In ... (1)
Lindström, Sandra (1)
Gagic, Vesna (1)
Hättenschwiler, Step ... (1)
Jensen, J. (1)
Brady, Mark (1)
Olsson, Ola (1)
Stjernman, Martin (1)
Dänhardt, Juliana (1)
Land, Magnus (1)
Steenbergen, E (1)
Báldi, András (1)
de Boer, Wietse (1)
Bezemer, T. M. (1)
Smilauer, P. (1)
van der Putten, W. H ... (1)
Scheu, Stefan (1)
Gavín-Centol, Maria ... (1)
Ingimarsdottir, Mari ... (1)
Kozjek, Katja (1)
visa färre...
Lärosäte
Lunds universitet (24)
Sveriges Lantbruksuniversitet (9)
Högskolan i Halmstad (3)
Språk
Engelska (23)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (22)
Lantbruksvetenskap (15)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy