SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jørgensen J.K.) "

Sökning: WFRF:(Jørgensen J.K.)

  • Resultat 1-15 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Benz, A. O., et al. (författare)
  • Hydrides in young stellar objects : Radiation tracers in a protostar-disk-outflow system
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L35-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Hydrides of the most abundant heavier elements are fundamental molecules in cosmic chemistry. Some of them trace gas irradiated by UV or X-rays. Aims: We explore the abundances of major hydrides in W3 IRS5, a prototypical region of high-mass star formation. Methods: W3 IRS5 was observed by HIFI on the Herschel Space Observatory with deep integration (≃2500 s) in 8 spectral regions. Results: The target lines including CH, NH, H3O+, and the new molecules SH+, H2O+, and OH+ are detected. The H2O+ and OH+ J = 1-0 lines are found mostly in absorption, but also appear to exhibit weak emission (P-Cyg-like). Emission requires high density, thus originates most likely near the protostar. This is corroborated by the absence of line shifts relative to the young stellar object (YSO). In addition, H2O+ and OH+ also contain strong absorption components at a velocity shifted relative to W3 IRS5, which are attributed to foreground clouds. Conclusions: The molecular column densities derived from observations correlate well with the predictions of a model that assumes the main emission region is in outflow walls, heated and irradiated by protostellar UV radiation. Herschel is an ESA space observatory with science instruments provided by a European-led Principal Investigator consortia and with important participation from NASA.Appendix (page 5) is only available in electronic form at http://www.aanda.org
  •  
2.
  • Bollard, J., et al. (författare)
  • Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules.
  • 2017
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • The most abundant components of primitive meteorites (chondrites) are millimeter-sized glassy spherical chondrules formed by transient melting events in the solar protoplanetary disk. Using Pb-Pb dates of 22 individual chondrules, we show that primary production of chondrules in the early solar system was restricted to the first million years after the formation of the Sun and that these existing chondrules were recycled for the remaining lifetime of the protoplanetary disk. This finding is consistent with a primary chondrule formation episode during the early high-mass accretion phase of the protoplanetary disk that transitions into a longer period of chondrule reworking. An abundance of chondrules at early times provides the precursor material required to drive the efficient and rapid formation of planetary objects via chondrule accretion.
  •  
3.
  • Bruderer, S., et al. (författare)
  • Herschel/HIFI detections of hydrides towards AFGL 2591. Envelope emission versus tenuous cloud absorption
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L44-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Heterodyne Instrument for the Far Infrared (HIFI) onboard the Herschel Space Observatory allows the first observations of light diatomic molecules at high spectral resolution and in multiple transitions. Here, we report deep integrations using HIFI in different lines of hydrides towards the high-mass star forming region AFGL 2591. Detected are CH, CH+, NH, OH+, H2O+, while NH+ and SH+ have not been detected. All molecules except for CH and CH+ are seen in absorption with low excitation temperatures and at velocities different from the systemic velocity of the protostellar envelope. Surprisingly, the CH(JF,P = 3/22,- - 1/21,+ ) and CH+(J = 1-0, J = 2-1) lines are detected in emission at the systemic velocity. We can assign the absorption features to a foreground cloud and an outflow lobe, while the CH and CH+ emission stems from the envelope. The observed abundance and excitation of CH and CH+ can be explained in the scenario of FUV irradiated outflow walls, where a cavity etched out by the outflow allows protostellar FUV photons to irradiate and heat the envelope at larger distances driving the chemical reactions that produce these molecules. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Apppendices and Table 1 (pages 6 to 7) are only available in electronic form at http://www.aanda.org
  •  
4.
  • Caselli, P., et al. (författare)
  • Water vapor toward starless cores : The Herschel view
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L29-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: Previous studies by the satellites SWAS and Odin provided stringent upper limits on the gas phase water abundance of dark clouds (x(H2O) < 7 × 10-9). We investigate the chemistry of water vapor in starless cores beyond the previous upper limits using the highly improved angular resolution and sensitivity of Herschel and measure the abundance of water vapor during evolutionary stages just preceding star formation. Methods: High spectral resolution observations of the fundamental ortho water (o-H2O) transition (557 GHz) were carried out with the Heterodyne Instrument for the Far Infrared onboard Herschel toward two starless cores: Barnard 68 (hereafter B68), a Bok globule, and LDN 1544 (L1544), a prestellar core embedded in the Taurus molecular cloud complex. Detailed radiative transfer and chemical codes were used to analyze the data. Results: The RMS in the brightness temperature measured for the B68 and L1544 spectra is 2.0 and 2.2 mK, respectively, in a velocity bin of 0.59 km s-1. The continuum level is 3.5 ± 0.2 mK in B68 and 11.4 ± 0.4 mK in L1544. No significant feature is detected in B68 and the 3σ upper limit is consistent with a column density of o-H2O N(o-H2O) < 2.5 × 1013 cm-2, or a fractional abundance x(o-H2O) < 1.3 × 10-9, more than an order of magnitude lower than the SWAS upper limit on this source. The L1544 spectrum shows an absorption feature at a 5σ level from which we obtain the first value of the o-H2O column density ever measured in dark clouds: N(o-H2O) = (8 ± 4) × 1012 cm-2. The corresponding fractional abundance is x(o-H2O) ≃ 5 × 10-9 at radii >7000 AU and ≃2 × 10-10 toward the center. The radiative transfer analysis shows that this is consistent with a x(o-H2O) profile peaking at ≃10-8, 0.1 pc away from the core center, where both freeze-out and photodissociation are negligible. Conclusions: Herschel has provided the first measurement of water vapor in dark regions. Column densities of o-H2O are low, but prestellar cores such as L1544 (with their high central densities, strong continuum, and large envelopes) appear to be very promising tools to finally shed light on the solid/vapor balance of water in molecular clouds and oxygen chemistry in the earliest stages of star formation. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
  •  
5.
  • Harsono, D., et al. (författare)
  • Resolved molecular line observations reveal an inherited molecular layer in the young disk around TMC1A
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 646
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Physical processes that govern the star and planet formation sequence influence the chemical composition and evolution of protoplanetary disks. Recent studies allude to an early start to planet formation already during the formation of a disk. To understand the chemical composition of protoplanets, we need to constrain the composition and structure of the disks from whence they are formed. Aims. We aim to determine the molecular abundance structure of the young disk around the TMC1A protostar on au scales in order to understand its chemical structure and any possible implications for disk formation. Methods. We present spatially resolved Atacama Large Millimeter/submillimeter Array observations of CO, HCO+, HCN, DCN, and SO line emission, as well as dust continuum emission, in the vicinity of TMC1A. Molecular column densities are estimated both under the assumption of optically thin emission from molecules in local thermodynamical equilibrium (LTE) as well as through more detailed non-LTE radiative transfer calculations. Results. Resolved dust continuum emission from the disk is detected between 220 and 260 GHz. Rotational transitions from HCO+, HCN, and SO are also detected from the inner 100 au region. We further report on upper limits to vibrational HCN υ2 = 1, DCN, and N2D+ lines. The HCO+ emission appears to trace both the Keplerian disk and the surrounding infalling rotating envelope. HCN emission peaks toward the outflow cavity region connected with the CO disk wind and toward the red-shifted part of the Keplerian disk. From the derived HCO+ abundance, we estimate the ionization fraction of the disk surface, and find values that imply that the accretion process is not driven by the magneto-rotational instability. The molecular abundances averaged over the TMC1A disk are similar to its protostellar envelope and other, older Class II disks. We meanwhile find a discrepancy between the young disk's molecular abundances relative to Solar System objects. Conclusions. Abundance comparisons between the disk and its surrounding envelope for several molecular species reveal that the bulk of planet-forming material enters the disk unaltered. Differences in HCN and H2O molecular abundances between the disk around TMC1A, Class II disks, and Solar System objects trace the chemical evolution during disk and planet formation.
  •  
6.
  • Jensen, S. S., et al. (författare)
  • ALMA observations of doubly deuterated water: Inheritance of water from the prestellar environment
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 650
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Establishing the origin of the water D/H ratio in the Solar System is central to our understanding of the chemical trail of water during the star and planet formation process. Recent modeling suggests that comparisons of the D2O/HDO and HDO/H2O ratios are a powerful way to trace the chemical evolution of water and, in particular, determine whether the D/H ratio is inherited from the molecular cloud or established locally. Aims. We seek to determine the D2O column density and derive the D2O/HDO ratios in the warm region toward the low-mass Class 0 sources B335 and L483. The results are compared with astrochemical models and previous observations to determine their implications for the chemical evolution of water. Methods. We present ALMA observations of the D2O 11,0-10,1 transition at 316.8 GHz toward B335 and L483 at 0.′′5 ( 100 au) resolution, probing the inner warm envelope gas. The column densities of D2O, HDO, and H218O are determined by synthetic spectrum modeling and direct Gaussian fitting, under the assumption of a single excitation temperature and similar spatial extent for the three water isotopologs. Results. D2O is detected toward both sources in the inner warm envelope. The derived D2O/HDO ratio is (1.0 ± 0.2) × 10-2 for L483 and (1.4 ± 0.1) × 10-2 for B335. These values indicate that the D2O/HDO ratio is higher than the HDO/H2O ratios by a factor of 2 toward both sources. Conclusions. The high D2O/HDO ratios are a strong indication of chemical inheritance of water from the prestellar phase down to the inner warm envelope. This implies that the local cloud conditions in the prestellar phase, such as temperatures and timescales, determine the water chemistry at later stages and could provide a source of chemical differentiation in young systems. In addition, the observed D2O/H2O ratios support an observed dichotomy in the deuterium fractionation of water toward isolated and clustered protostars, namely, a higher D/H ratio toward isolated sources.
  •  
7.
  • Kristensen, L. E., et al. (författare)
  • Water in low-mass star-forming regions with Herschel . HIFI spectroscopy of NGC 1333
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L30-
  • Tidskriftsartikel (refereegranskat)abstract
    • “Water In Star-forming regions with Herschel” (WISH) is a key programme dedicated to studying the role of water and related species during the star-formation process and constraining the physical and chemical properties of young stellar objects. The Heterodyne Instrument for the Far-Infrared (HIFI) on the Herschel Space Observatory observed three deeply embedded protostars in the low-mass star-forming region NGC 1333 in several H_216O, H_218O, and CO transitions. Line profiles are resolved for five H_216O transitions in each source, revealing them to be surprisingly complex. The line profiles are decomposed into broad (>20 km s-1), medium-broad (~5-10 km s-1), and narrow (<5 km s-1) components. The H_218O emission is only detected in broad 110-101 lines (>20 km s-1), indicating that its physical origin is the same as for the broad H_216O component. In one of the sources, IRAS4A, an inverse P Cygni profile is observed, a clear sign of infall in the envelope. From the line profiles alone, it is clear that the bulk of emission arises from shocks, both on small (⪉1000 AU) and large scales along the outflow cavity walls (~10 000 AU). The H2O line profiles are compared to CO line profiles to constrain the H2O abundance as a function of velocity within these shocked regions. The H2O/CO abundance ratios are measured to be in the range of ~0.1-1, corresponding to H2O abundances of ~10-5-10-4 with respect to H2. Approximately 5-10% of the gas is hot enough for all oxygen to be driven into water in warm post-shock gas, mostly at high velocities. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Tables 2 and 3 (page 6) are only available in electronic form at http://www.aanda.org
  •  
8.
  • Ligterink, N. F. W., et al. (författare)
  • The ALMA-PILS survey: Detection of CH3NCO toward the low-mass protostar IRAS 16293-2422 and laboratory constraints on its formation
  • 2017
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966.
  • Tidskriftsartikel (refereegranskat)abstract
    • Methyl isocyanate (CH3NCO) belongs to a select group of interstellar molecules considered to be relevant precursors in the formation of larger organic compounds, including those with peptide bonds. The molecule has only been detected in a couple of high-mass protostars and potentially on comets. A formation route on icy grains has been postulated for this molecule but experimental evidence is lacking. Here we ex- tend the range of environments where methyl isocyanate is found, and unambiguously identify CH3NCO through the detection of 43 unblended transitions in the ALMA Protostellar Interferometric Line Survey (PILS) of the low mass solar-type protostel- lar binary IRAS 16293-2422. The molecule is detected toward both components of the binary with a ratio HNCO/CH3NCO ∼4–12. The isomers CH3CNO and CH3OCN are not identified, resulting in upper abundance ratios of CH3NCO/CH3CNO > 100 and CH3NCO/CH3OCN > 10. The resulting abundance ratios compare well with those found for related N-containing species toward high-mass protostars. To constrain its formation, a set of cryogenic UHV experiments is performed. VUV irradiation of CH4:HNCO mixtures at 20 K strongly indicate that methyl isocyanate can be formed in the solid-state through CH3 and (H)NCO recombinations. Combined with gas-grain models that include this reaction, the solid-state route is found to be a plausible sce- nario to explain the methyl isocyanate abundances found in IRAS 16293-2422. Key
  •  
9.
  • Ligterink, N. F W, et al. (författare)
  • The prebiotic molecular inventory of Serpens SMM1: I. An investigation of the isomers CH 3 NCO and HOCH 2 CN
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 647
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. Methyl isocyanate (CH3NCO) and glycolonitrile (HOCH2CN) are isomers and prebiotic molecules that are involved in the formation of peptide structures and the nucleobase adenine, respectively. These two species are investigated to study the interstellar chemistry of cyanides (CN) and isocyanates (NCO) and to gain insight into the reservoir of interstellar prebiotic molecules. Methods. ALMA observations of the intermediate-mass Class 0 protostar Serpens SMM1-a and ALMA-PILS data of the low-mass Class 0 protostar IRAS 16293B are used. Spectra are analysed with the CASSIS line analysis software package in order to identify and characterise molecules. Results. CH3NCO, HOCH2CN, and various other molecules are detected towards SMM1-a. HOCH2CN is identified in the PILS data towards IRAS 16293B in a spectrum extracted at a half-beam offset position from the peak continuum. CH3NCO and HOCH2CN are equally abundant in SMM1-a at [X]/[CH3OH] of 5.3 × 10-4 and 6.2 × 10-4, respectively. A comparison between SMM1-a and IRAS 16293B shows that HOCH2CN and HNCO are more abundant in the former source, but CH3NCO abundances do not differ significantly. Data from other sources are used to show that the [CH3NCO]/[HNCO] ratio is similar in all these sources within ~10%. Conclusions. The new detections of CH3NCO and HOCH2CN are additional evidence for a large interstellar reservoir of prebiotic molecules that can contribute to the formation of biomolecules on planets. The equal abundances of these molecules in SMM1-a indicate that their formation is driven by kinetic processes instead of thermodynamic equilibrium, which would drive the chemistry to one product. HOCH2CN is found to be much more abundant in SMM1-a than in IRAS 16293B. From the observational data, it is difficult to indicate a formation pathway for HOCH2CN, but the thermal Strecker-like reaction of CN- with H2CO is a possibility. The similar [CH3NCO]/[HNCO] ratios found in the available sample of studied interstellar sources indicate that these two species are either chemically related or their formation is affected by physical conditions in the same way. Both species likely form early during star formation, presumably via ice mantle reactions taking place in the dark cloud or when ice mantles are being heated in the hot core. The relatively high abundances of HOCH2CN and HNCO in SMM1-a may be explained by a prolonged stage of relatively warm ice mantles, where thermal and energetic processing of HCN in the ice results in the efficient formation of both species.
  •  
10.
  • Manigand, S., et al. (författare)
  • The ALMA-PILS survey: First detection of the unsaturated 3-carbon molecules Propenal (C2H3CHO) and Propylene (C3H6) towards IRAS 16293-2422 B
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 645
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Complex organic molecules with three carbon atoms are found in the earliest stages of star formation. In particular, propenal (C2H3CHO) is a species of interest due to its implication in the formation of more complex species and even biotic molecules. Aims. This study aims to search for the presence of C2H3CHO and other three-carbon species such as propylene (C3H6) in the hot corino region of the low-mass protostellar binary IRAS 16293-2422 to understand their formation pathways. Methods. We use ALMA observations in Band 6 and 7 from various surveys to search for the presence of C3H6 and C2H3CHO towards the protostar IRAS 16293-2422 B (IRAS 16293B). The identification of the species and the estimates of the column densities and excitation temperatures are carried out by modeling the observed spectrum under the assumption of local thermodynamical equilibrium. Results. We report the detection of both C3H6 and C2H3CHO towards IRAS 16293B, however, no unblended lines were found towards the other component of the binary system, IRAS 16293A. We derive column density upper limits for C3H8, HCCCHO, n-C3H7OH, i-C3H7OH, C3O, and cis-HC(O)CHO towards IRAS 16293B. We then use a three-phase chemical model to simulate the formation of these species in a typical prestellar environment followed by its hydrodynamical collapse until the birth of the central protostar. Different formation paths, such as successive hydrogenation and radical-radical additions on grain surfaces, are tested and compared to the observational results in a number of different simulations, to assess which are the dominant formation mechanisms in the most embedded region of the protostar. Conclusions. The simulations reproduce the abundances within one order of magnitude from those observed towards IRAS 16293B, with the best agreement found for a rate of 10-12 cm3 s-1 for the gas-phase reaction C3 + O → C2 + CO. Successive hydrogenations of C3, HC(O)CHO, and CH3OCHO on grain surfaces are a major and crucial formation route of complex organics molecules, whereas both successive hydrogenation pathways and radical-radical addition reactions contribute to the formation of C2H5CHO.
  •  
11.
  • Manigand, S., et al. (författare)
  • The ALMA-PILS survey: The first detection of doubly-deuterated methyl formate (CHD2OCHO) in the ISM
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746.
  • Tidskriftsartikel (refereegranskat)abstract
    • Studies of deuterated isotopologues of complex organic molecules can provide important constraints on their origin in regions of star formation. In particular, the abundances of deuterated species are very sensitive to the physical conditions in the environment where they form. Due to the low temperatures in regions of star formation, these isotopologues are enhanced to significant levels, making detections of multiply-deuterated species possible. However, for complex organic species, only the multiply-deuterated variants of methanol and methyl cyanide have been reported so far. The aim of this paper is to initiate the characterisation of multiply-deuterated variants of complex organic species with the first detection of doubly-deuterated methyl formate, CHD2OCHO. We use ALMA observations from the Protostellar Interferometric Line Survey (PILS) of the protostellar binary IRAS 16293-2422, in the spectral range of 329.1 GHz to 362.9 GHz. We report the first detection of doubly-deuterated methyl formate CHD2OCHO in the ISM. The D/H ratio of CHD2OCHO is found to be 2-3 times higher than the D/H ratio of CH2DOCHO for both sources, similar to the results for formaldehyde from the same dataset. The observations are compared to a gas-grain chemical network coupled to a dynamical physical model, tracing the evolution of a molecular cloud until the end of the Class 0 protostellar stage. The overall D/H ratio enhancements found in the observations are of the same order of magnitude as the predictions from the model for the early stages of Class 0 protostars. However, the higher D/H ratio of CHD2OCHO compared to the D/H ratio of CH2DOCHO is still not predicted by the model. This suggests that a mechanism is enhancing the D/H ratio of singly- and doubly-deuterated methyl formate that is not in the model, e.g. mechanisms for H-D substitutions.
  •  
12.
  • Marseille, M. G., et al. (författare)
  • Water abundances in high-mass protostellar envelopes : Herschel observations with HIFI
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L32-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: We derive the dense core structure and the water abundance in four massive star-forming regions in the hope of understanding the earliest stages of massive star formation. Methods: We present Herschel/HIFI observations of the para-H2O 111-000 and 202-111 and the para-H_218O 111-000 transitions. The envelope contribution to the line profiles is separated from contributions by outflows and foreground clouds. The envelope contribution is modeled with Monte-Carlo radiative transfer codes for dust and molecular lines (MC3D and RATRAN), and the water abundance and the turbulent velocity width as free parameters. Results: While the outflows are mostly seen in emission in high-J lines, envelopes are seen in absorption in ground-state lines, which are almost saturated. The derived water abundances range from 5×10-10 to 4×10-8 in the outer envelopes. We detect cold clouds surrounding the protostar envelope, thanks to the very high quality of the Herschel/HIFI data and the unique ability of water to probe them. Several foreground clouds are also detected along the line of sight. Conclusions: The low H2O abundances in massive dense cores are in accordance with the expectation that high densities and low temperatures lead to freeze-out of water on dust grains. The spread in abundance values is not clearly linked to physical properties of the sources. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation of NASA.Appendix (pages 6 to 7) is only available in electronic form at http://www.aanda.org
  •  
13.
  • Perotti, G., et al. (författare)
  • Linking ice and gas in the λ Orionis Barnard 35A cloud
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 650
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Dust grains play an important role in the synthesis of molecules in the interstellar medium, from the simplest species, such as H2, to complex organic molecules. How some of these solid-state molecules are converted into gas-phase species is still a matter of debate. Aims. Our aim is to directly compare ice and gas abundances of methanol (CH3OH) and carbon monoxide (CO) obtained from near-infrared (2.5-5 μm) and millimetre (1.3 mm) observations and to investigate the relationship between ice, dust, and gas in low-mass protostellar envelopes. Methods. We present Submillimeter Array (SMA) and Atacama Pathfinder EXperiment (APEX) observations of gas-phase CH3OH (JK = 5K-4K), 13CO, and C18O (J = 2-1) towards the multiple protostellar system IRAS 05417+0907, which is located in the B35A cloud, λ Orionis region. We use archival IRAM 30 m data and AKARI H2O, CO, and CH3OH ice observations towards the same target to compare ice and gas abundances and directly calculate CH3OH and CO gas-to-ice ratios. Results. The CO isotopologue emissions are extended, whereas the CH3OH emission is compact and traces the giant molecular outflow emanating from IRAS 05417+0907. A discrepancy between sub-millimetre dust emission and H2O ice column density is found for B35A-4 and B35A-5, similar to what has previously been reported. B35A-2 and B35A-3 are located where the sub-millimetre dust emission peaks and show H2O column densities lower than that of B35A-4. Conclusions. The difference between the sub-millimetre continuum emission and the infrared H2O ice observations suggests that the distributions of dust and H2O ice differ around the young stellar objects in this dense cloud. The reason for this may be that the four sources are located in different environments resolved by the interferometric observations: B35A-2, B35A-3, and, in particular, B35A-5 are situated in a shocked region that is plausibly affected by sputtering and heating, which in turn impacts the sub-millimetre dust emission pattern, while B35A-4 is situated in a more quiescent part of the cloud. Gas and ice maps are essential for connecting small-scale variations in the ice composition with the large-scale astrophysical phenomena probed by gas observations.
  •  
14.
  • Persson, Magnus V., 1983, et al. (författare)
  • The ALMA-PILS Survey: Formaldehyde deuteration in warm gas on small scales toward IRAS 16293-2422 B
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 610
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The enhanced degrees of deuterium fractionation observed in envelopes around protostars demonstrate the importance of chemistry at low temperatures, relevant in pre- and protostellar cores. Formaldehyde is an important species in the formation of methanol and more complex molecules. Aims. Here, we aim to present the first study of formaldehyde deuteration on small scales around the prototypical low-mass protostar IRAS 16293-2422 using high spatial and spectral resolution Atacama Large Millimeter/submillimeter Array (ALMA) observations. We determine the excitation temperature, abundances and fractionation level of several formaldehyde isotopologues, including its deuterated forms. Methods. Excitation temperature and column densities of formaldehyde in the gas close to one of the components of the binary were constrained through modeling of optically thin lines assuming local thermodynamical equilibrium. The abundance ratios were compared to results from previous single dish observations, astrochemical models and local ISM values. Results. Numerous isotopologues of formaldehyde are detected, among them H 2 C 17 O, and D 2 13 CO for the first time in the ISM. The large range of upper energy levels covered by the HDCO lines help constrain the excitation temperature to 106 ± 13 K. Using the derived column densities, formaldehyde shows a deuterium fractionation of HDCO/H 2 CO = 6.5 ± 1%, D 2 CO/HDCO = 12.8 -4.1 +3.3 %, and D 2 CO/H 2 CO = 0.6(4) ± 0.1%. The isotopic ratios derived are 16 O/ 18 O = 805 -79 +43 , 18 O/ 17 O = 3.2 -0.3 +0.2 , and 12 C/ 13 C = 56 -11 +8 . Conclusions. The HDCO/H 2 CO ratio is lower than that found in previous studies, highlighting the uncertainties involved in interpreting single dish observations of the inner warm regions. The D 2 CO/HDCO ratio is only slightly larger than the HDCO/H 2 CO ratio. This is consistent with formaldehyde forming in the ice as soon as CO has frozen onto the grains, with most of the deuteration happening toward the end of the prestellar core phase. A comparison with available time-dependent chemical models indicates that the source is in the early Class 0 stage.
  •  
15.
  • Wampfler, S. F., et al. (författare)
  • Herschel observations of the hydroxyl radical (OH) in young stellar objects
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L36-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: “Water In Star-forming regions with Herschel” (WISH) is a Herschel key program investigating the water chemistry in young stellar objects (YSOs) during protostellar evolution. Hydroxyl (OH) is one of the reactants in the chemical network most closely linked to the formation and destruction of H2O. High-temperature (T ⪆ 250 K) chemistry connects OH and H2O through the OH + H2 Leftrightarrow H2O + H reactions. Formation of H2O from OH is efficient in the high-temperature regime found in shocks and the innermost part of protostellar envelopes. Moreover, in the presence of UV photons, OH can be produced from the photo-dissociation of H2O through H2O + γUV Rightarrow OH + H. Methods: High-resolution spectroscopy of the 163.12 μm triplet of OH towards HH 46 and NGC 1333 IRAS 2A was carried out with the Heterodyne Instrument for the Far Infrared (HIFI) on board the Herschel Space Observatory. The low- and intermediate-mass protostars HH 46, TMR 1, IRAS 15398-3359, DK Cha, NGC 7129 FIRS 2, and NGC 1333 IRAS 2A were observed with the Photodetector Array Camera and Spectrometer (PACS) on Herschel in four transitions of OH and two [O i] lines. Results: The OH transitions at 79, 84, 119, and 163 μm and [O i] emission at 63 and 145 μm were detected with PACS towards the class I low-mass YSOs as well as the intermediate-mass and class I Herbig Ae sources. No OH emission was detected from the class 0 YSO NGC 1333 IRAS 2A, though the 119 μm was detected in absorption. With HIFI, the 163.12 μm was not detected from HH 46 and only tentatively detected from NGC 1333 IRAS 2A. The combination of the PACS and HIFI results for HH 46 constrains the line width (FWHM ⪆ 11 km s-1) and indicates that the OH emission likely originates from shocked gas. This scenario is supported by trends of the OH flux increasing with the [O i] flux and the bolometric luminosity, as found in our sample. Similar OH line ratios for most sources suggest that OH has comparable excitation temperatures despite the different physical properties of the sources. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendices (page 6) are only available in electronic form at http://www.aanda.org
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-15 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy