SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jaén Luchoro Daniel) "

Sökning: WFRF:(Jaén Luchoro Daniel)

  • Resultat 1-34 av 34
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alves, G., et al. (författare)
  • Identification of Antibiotic Resistance Proteins via MiCId's Augmented Workflow. A Mass Spectrometry-Based Proteomics Approach
  • 2022
  • Ingår i: Journal of the American Society for Mass Spectrometry. - : American Chemical Society (ACS). - 1044-0305 .- 1879-1123. ; 33:6, s. 917-931
  • Tidskriftsartikel (refereegranskat)abstract
    • Fast and accurate identifications of pathogenic bacteria along with their associated antibiotic resistance proteins are of paramount importance for patient treatments and public health. To meet this goal from the mass spectrometry aspect, we have augmented the previously published Microorganism Classification and Identification (MiCId) workflow for this capability. To evaluate the performance of this augmented workflow, we have used MS/MS datafiles from samples of 10 antibiotic resistance bacterial strains belonging to three different species: Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The evaluation shows that MiCId's workflow has a sensitivity value around 85% (with a lower bound at about 72%) and a precision greater than 95% in identifying antibiotic resistance proteins. In addition to having high sensitivity and precision, MiCId's workflow is fast and portable, making it a valuable tool for rapid identifications of bacteria as well as detection of their antibiotic resistance proteins. It performs microorganismal identifications, protein identifications, sample biomass estimates, and antibiotic resistance protein identifications in 6-17 min per MS/MS sample using computing resources that are available in most desktop and laptop computers. We have also demonstrated other use of MiCId's workflow. Using MS/MS data sets from samples of two bacterial clonal isolates, one being antibiotic-sensitive while the other being multidrug-resistant, we applied MiCId's workflow to investigate possible mechanisms of antibiotic resistance in these pathogenic bacteria; the results showed that MiCId's conclusions agree with the published study.
  •  
2.
  • Bennasar-Figueras, Antoni, et al. (författare)
  • Complete Genome Sequence of Pseudomonas balearica DSM 6083T.
  • 2016
  • Ingår i: Genome Announcements. - 2169-8287. ; 4:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The whole-genome sequence of ITALIC! Pseudomonas balearicaSP1402 (DSM 6083(T)) has been completed and annotated. It was isolated as a naphthalene degrader from water of a lagooning wastewater treatment plant. ITALIC! P.balearicastrains tolerate up to 8.5% NaCl and are considered true marine denitrifiers.
  •  
3.
  • Crespi, S., et al. (författare)
  • Legionella maioricensis sp. nov., a new species isolated from the hot water distribution systems of a hospital and a shopping center during routine sampling
  • 2023
  • Ingår i: International Journal of Systematic and Evolutionary Microbiology. - : Microbiology Society. - 1466-5026 .- 1466-5034. ; 73:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Two Legionella- like strains isolated from hot water distribution systems in 2012 have been characterized phenotypically, bio-chemically and genomically in terms of DNA relatedness. Both strains, HCPI- 6T and EUR- 108, exhibited biochemical pheno-typic profiles typical of Legionella species. Cells were Gram-negative motile rods which grew on BCYE alpha agar but not on blood agar and displayed phenotypic characteristics typical of the family Legionellaceae, including a requirement for L-cysteine and testing catalase positive. Both strains were negative for oxidase, urease, nitrate reduction and hippurate negative, and non -fermentative. The major ubiquinone was Q12 (59.4 % HCPI- 6T) and the dominant fatty acids were C16:1 omega 7c (28.4 % HCPI- 6T, 216 % EUR- 108), C16: 0 iso (222.5 % and 213 %) and C15: 0 anteiso (19.5 % and 223.5 %, respectively). The percent G+C content of genomic DNA was determined to be 39.3 mol %. The 16S rRNA gene, mip sequence and comparative genome sequence -based analyses (average nucleotide identity, ANI; digital DNA-DNA hybridization, dDDH; and phylogenomic treeing) demonstrated that the strains represent a new species of the genus Legionella. The analysis based on the 16S rRNA gene sequences showed that the sequence similarities for both strains ranged from 98.8-90.1 % to other members of the genus. The core genome- based phylogenomic tree (protein-concatemer tree based on concatenation of 418 proteins present in single copy) revealed that these two strains clearly form a separate cluster within the genus Legionella. ANI and dDDH values confirmed the distinctiveness of the strains. Based on the genomic, genotypic and phenotypic findings from a polyphasic study, the isolates are considered to represent a single novel species, for which the name Legionella maioricensis sp. nov. is proposed. The type strain is HCPI- 6T (=CCUG 75071T=CECT 30569T).
  •  
4.
  •  
5.
  • Fernández-Juárez, V., et al. (författare)
  • Everything Is Everywhere: Physiological Responses of the Mediterranean Sea and Eastern Pacific Ocean Epiphyte Cobetia Sp. to Varying Nutrient Concentration
  • 2022
  • Ingår i: Microbial Ecology. - : Springer Science and Business Media LLC. - 0095-3628 .- 1432-184X. ; 83:2, s. 296-313
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacteria are essential in the maintenance and sustainment of marine environments (e.g., benthic systems), playing a key role in marine food webs and nutrient cycling. These microorganisms can live associated as epiphytic or endophytic populations with superior organisms with valuable ecological functions, e.g., seagrasses. Here, we isolated, identified, sequenced, and exposed two strains of the same species (i.e., identified as Cobetia sp.) from two different marine environments to different nutrient regimes using batch cultures: (1) Cobetia sp. UIB 001 from the endemic Mediterranean seagrass Posidonia oceanica and (2) Cobetia sp. 4B UA from the endemic Humboldt Current System (HCS) seagrass Heterozostera chilensis. From our physiological studies, both strains behaved as bacteria capable to cope with different nutrient and pH regimes, i.e., N, P, and Fe combined with different pH levels, both in long-term (12days (d)) and short-term studies (4 d/96h (h)). We showed that the isolated strains were sensitive to the N source (inorganic and organic) at low and high concentrations and low pH levels. Low availability of phosphorus (P) and Fe had a negative independent effect on growth, especially in the long-term studies. The strain UIB 001 showed a better adaptation to low nutrient concentrations, being a potential N2-fixer, reaching higher growth rates (μ) than the HCS strain. P-acquisition mechanisms were deeply investigated at the enzymatic (i.e., alkaline phosphatase activity, APA) and structural level (e.g., alkaline phosphatase D, PhoD). Finally, these results were complemented with the study of biochemical markers, i.e., reactive oxygen species (ROS). In short, we present how ecological niches (i.e., MS and HCS) might determine, select, and modify the genomic and phenotypic features of the same bacterial species (i.e., Cobetia spp.) found in different marine environments, pointing to a direct correlation between adaptability and oligotrophy of seawater. © 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
  •  
6.
  • Gonzales-Siles, Lucia, et al. (författare)
  • A Pangenome Approach for Discerning Species-Unique Gene Markers for Identifications of Streptococcus pneumoniae and Streptococcus pseudopneumoniae
  • 2020
  • Ingår i: Frontiers in Cellular and Infection Microbiology. - : Frontiers Media SA. - 2235-2988. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Correct identifications of isolates and strains of the Mitis-Group of the genus Streptococcus are particularly difficult, due to high genetic similarity, resulting from horizontal gene transfer and homologous recombination, and unreliable phenotypic and genotypic biomarkers for differentiating the species. Streptococcus pneumoniae and Streptococcus pseudopneumoniae are the most closely related species of the clade. In this study, publicly-available genome sequences for Streptococcus pneumoniae and S. pseudopneumoniae were analyzed, using a pangenomic approach, to find candidates for species-unique gene markers; ten species-unique genes for S. pneumoniae and nine for S. pseudopneumoniae were identified. These species-unique gene marker candidates were verified by PCR assays for identifying S. pneumoniae and S. pseudopneumoniae strains isolated from clinical samples. All determined species-level unique gene markers for S. pneumoniae were detected in all S. pneumoniae clinical isolates, whereas fewer of the unique S. pseudopneumoniae gene markers were present in more than 95% of the clinical isolates. In parallel, taxonomic identifications of the clinical isolates were confirmed, using conventional optochin sensitivity testing, targeted PCR-detection for the "Xisco" gene, as well as genomic ANIb similarity analyses for the genome sequences of selected strains. Using mass spectrometry-proteomics, species-specific peptide matches were observed for four of the S. pneumoniae gene markers and for three of the S. pseudopneumoniae gene markers. Application of multiple species-level unique biomarkers of S. pneumoniae and S. pseudopneumoniae, is proposed as a protocol for the routine clinical laboratory for improved, reliable differentiation, and identification of these pathogenic and commensal species.
  •  
7.
  • Grankvist, A., et al. (författare)
  • Comparative Genomics of Clinical Isolates of the Emerging Tick-Borne Pathogen Neoehrlichia mikurensis
  • 2021
  • Ingår i: Microorganisms. - : MDPI AG. - 2076-2607. ; 9:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Tick-borne 'Neoehrlichia (N.) mikurensis' is the cause of neoehrlichiosis, an infectious vasculitis of humans. This strict intracellular pathogen is a member of the family Anaplasmataceae and has been unculturable until recently. The only available genetic data on this new pathogen are six partially sequenced housekeeping genes. The aim of this study was to advance the knowledge regarding 'N. mikurensis' genomic relatedness with other Anaplasmataceae members, intra-species genotypic variability and potential virulence factors explaining its tropism for vascular endothelium. Here, we present the de novo whole-genome sequences of three 'N. mikurensis' strains derived from Swedish patients diagnosed with neoehrlichiosis. The genomes were obtained by extraction of DNA from patient plasma, library preparation using 10x Chromium technology, and sequencing by Illumina Hiseq-4500. 'N. mikurensis' was found to have the next smallest genome of the Anaplasmataceae family (1.1 Mbp with 27% GC contents) consisting of 845 protein-coding genes, every third of which with unknown function. Comparative genomic analyses revealed that 'N. mikurensis' was more closely related to Ehrlichia chaffeensis than to Ehrlichia ruminantium, the opposite of what 16SrRNA sequence-based phylogenetic analyses determined. The genetic variability of the three whole-genome-sequenced 'N. mikurensis' strains was extremely low, between 0.14 and 0.22 parts per thousand, a variation that was associated with geographic origin. No protein-coding genes exclusively shared by N. mikurensis and E. ruminantium were identified to explain their common tropism for vascular endothelium.
  •  
8.
  • Jaén-Luchoro, Daniel, et al. (författare)
  • Comparative Genomic Analysis of ST131 Subclade C2 of ESBL-Producing E. coli Isolates from Patients with Recurrent and Sporadic Urinary Tract Infections
  • 2023
  • Ingår i: Microorganisms. - 2076-2607. ; 11:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The global emergence of extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-E. coli), mainly causing urinary tract infections (UTI), is a major threat to human health. ESBL-E. coli sequence type (ST) 131 is the dominating clone worldwide, especially its subclade C2. Patients developing recurrent UTI (RUTI) due to ST131 subclade C2 appear to have an increased risk of recurrent infections. We have thus compared the whole genome of ST131 subclade C2 isolates from 14 patients with RUTI to those from 14 patients with sporadic UTI (SUTI). We aimed to elucidate if isolates causing RUTI can be associated with specific genomic features. Paired isolates from patients with RUTI were identical, presenting 2-18 single nucleotide polymorphism (SNP) differences for all six patients investigated. Comparative genomic analyses, including virulence factors, antibiotic resistance, pangenome and SNP analyses did not find any pattern associated with isolates causing RUTI. Despite extensive whole genome analyses, an increased risk of recurrences seen in patients with UTI due to ST131 subclade C2 isolates could not be explained by bacterial genetic differences in the two groups of isolates. Hence, additional factors that could aid in identifying bacterial properties contributing to the increased risk of RUTI due to ESBL-E. coli ST131 subclade C2 remains to be explored.
  •  
9.
  • Jaén-Luchoro, Daniel, et al. (författare)
  • Complete Genome Sequence of the Mycobacterium immunogenum Type Strain CCUG 47286.
  • 2016
  • Ingår i: Genome Announcements. - 2169-8287. ; 4:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Here, we report the complete genome sequence of Mycobacterium immunogenum type strain CCUG 47286, a nontuberculous mycobacterium. The whole genome has 5,573,781bp and covers as many as 5,484 predicted genes. This genome contributes to the task of closing the still-existing gap of genomes of rapidly growing mycobacterial type strains.
  •  
10.
  • Jaen-Luchoro, Daniel, et al. (författare)
  • Corynebacterium genitalium sp. nov., nom. rev. and Corynebacterium pseudogenitalium sp. nov., nom. rev., two old species of the genus Corynebacterium described from clinical and environmental samples
  • 2023
  • Ingår i: Research in Microbiology. - : Elsevier BV. - 0923-2508. ; 174:1-2
  • Tidskriftsartikel (refereegranskat)abstract
    • Two Corynebacterium species were proposed decades ago, isolated from clinical samples and divided into biovars: "Corynebacterium genitalium" biovars I-V and "Corynebacterium pseudogenitalium" biovars C1 -C6. Several biovars have been re-classified as new species. Nevertheless, biovar I and C5, together with their respective specific epithets "Corynebacterium genitalium" and "Corynebacterium pseudogenitalium", remained not validly published after more than 40 years. Several more strains, temptatively classified as "C. genitalium" biovar I and "Corynebacterium pseudogenitalium" C5, have been isolated from clinical and environmental samples. Both species presented Gram-positive, non-spore forming rod-shaped cells, able to grow aerobically with CO2. Core-genome analysis identified "C. genitalium" to be most closely related to Corynebacterium tuscaniense, Corynebacterium urinipleomorphum, Corynebacterium aquatimens and C appendicis, and Corynebacterium gottingense as the most closely related species to "C. pseudogenitalium". Comprehensive genomic, genotypic, phenotypic analyses, as well as chemotaxonomic, support the proposal for "C. genitalium" and "C. pseudogenitalium" as distinct species within the genus Corynebacterium. The designated type strains of the two species are Furness 392-1T = ATCC 33030T = CCUG 38989T = CCM 9178T = DSM 113155T for C. genitalium sp. nov., nom. rev., and Furness 162-C2T = ATCC 33039T = CCUG 27540T = CCM 9177T = DSM 113154T for C. pseudogenitalium sp. nov., nom. rev. (c) 2022 The Author(s). Published by Elsevier Masson SAS on behalf of Institut Pasteur. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  •  
11.
  • Jaén-Luchoro, Daniel, et al. (författare)
  • Corynebacterium sanguinis sp. nov., a clinical and environmental associated corynebacterium.
  • 2020
  • Ingår i: Systematic and applied microbiology. - : Elsevier BV. - 1618-0984 .- 0723-2020. ; 43:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Clinical and environmental-associated strains (n=17), genotypically related to Corynebacterium spp., yet distinct from any species of the genus Corynebacterium with validly published names, have been isolated during the last 20 years and tentatively identified as Corynebacterium sanguinis, although the combination, "Corynebacterium sanguinis" was never validly published. The comprehensive genotypic and phenotypic characterisations and genomic analyses in this study support the proposal for recognizing the species within the genus Corynebacterium, for which the name, Corynebacterium sanguinis sp. nov., is reaffirmed and proposed. Strains of Corynebacterium sanguinis are Gram-positive, non-motile, non-spore-forming, short, pleomorphic and coryneform bacilli, growing aerobically, with CO2. They contain mycolic acids, major respiratory menaquinones, MK-8 (II-H2) and MK-9 (II-H2), and polar lipids, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, phosphoglycolipid, glycolipids and a novel lipid that remains to be characterized and identified. Strains of Corynebacterium sanguinis are genotypically most similar to Corynebacterium lipophiliflavum, with 16S rRNA gene sequence similarities of 98.3% and rpoB sequence similarities of 94.9-95.2%. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis were able to clearly differentiate Corynebacterium sanguinis from the most closely related species. The genome size of Corynebacterium sanguinis is 2.28-2.37Mbp with 65.1-65.5mol% G+C content. A total of 2202-2318 ORFs were predicted, comprising 2141-2251 protein-encoding genes. The type strain is CCUG 58655T (=CCM 8873T=NCTC 14287T).
  •  
12.
  • Jaen-Luchoro, Daniel, et al. (författare)
  • First insights into a type II toxin-antitoxin system from the clinical isolate Mycobacterium sp MHSD3, similar to epsilon/zeta systems
  • 2017
  • Ingår i: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 12:12
  • Tidskriftsartikel (refereegranskat)abstract
    • A putative type II toxin-antitoxin (TA) system was found in the clinical isolate Mycobacterium sp. MHSD3, a strain closely related to Mycobacterium chelonae. Further analyses of the protein sequences of the two genes revealed the presence of domains related to a TA system. BLAST analyses indicated the presence of closely related proteins in the genomes of other recently published M. chelonae strains. The functionality of both elements of the TA system was demonstrated when expressed in Escherichia coli cells, and the predicted structure of the toxin is very similar to those of well-known zeta-toxins, leading to the definition of a type II TA system similar to epsilon/zeta TA systems in strains that are closely related to M. chelonae.
  •  
13.
  • Jaen-Luchoro, Daniel, et al. (författare)
  • Genomic and Proteomic Characterization of the Extended-Spectrum beta-Lactamase (ESBL)-Producing Escherichia coli Strain CCUG 73778: A Virulent, Nosocomial Outbreak Strain
  • 2020
  • Ingår i: Microorganisms. - : MDPI AG. - 2076-2607. ; 8:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Escherichia colistrain CCUG 78773 is a virulent extended-spectrum beta-lactamase (ESBL)-producing ST131-O25b type strain isolated during an outbreak at a regional university hospital. The complete and closed genome sequence, comprising one chromosome (5,076,638 bp) and six plasmids (1718-161,372 bp), is presented. Characterization of the genomic features detected the presence of 59 potential antibiotic resistance factors, including three prevalent beta-lactamases. Several virulence associated elements were determined, mainly related with adherence, invasion, biofilm formation and antiphagocytosis. Twenty-eight putative type II toxin-antitoxin systems were found. The plasmids were characterized, through in silico analyses, confirming the two beta-lactamase-encoding plasmids to be conjugative, while the remaining plasmids were mobilizable. BLAST analysis of the plasmid sequences showed high similarity with plasmids inE. colifrom around the world. Expression of many of the described virulence and AMR factors was confirmed by proteomic analyses, using bottom-up, liquid chromatography-tandem mass spectrometry (LC-MS/MS). The detailed characterization ofE. colistrain CCUG 78773 provides a reference for the relevance of genetic elements, as well as the characterization of antibiotic resistance and the spread of bacteria harboring ESBL genes in the hospital environment.
  •  
14.
  • Jaen-Luchoro, Daniel, et al. (författare)
  • Knockout of Targeted Plasmid-Borne fl-Lactamase Genes in an Extended-Spectrum-fl-Lactamase-Producing Escherichia coli Strain: Impact on Resistance and Proteomic Profile
  • 2023
  • Ingår i: Microbiology Spectrum. - : American Society for Microbiology. - 2165-0497. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Resistance to beta-lactams is known to be multifactorial, although the underlying mechanisms are not well established. The aim of our study was to develop a system for assessing the phenotypic and proteomic responses of bacteria to antibiotic stress as a result of the loss of selected antimicrobial resistance genes. We applied homologous recombination to knock out plasmid-borne beta-lactamase genes (bla(OXA-1), bla(TEM-1), and bla(CTX-M15)) in Escherichia coli CCUG 73778, generating knockout clone variants lacking the respective deleted beta-lactamases. Quantitative proteomic analyses were performed on the knockout variants and the wild-type strain, using bottom-up liquid chromatography tandem mass spectrometry (LC-MS/MS), after exposure to different concentrations of cefadroxil. Loss of the bla(CTX-M-15) gene had the greatest impact on the resulting protein expression dynamics, while losses of bla(OXA-1) and bla(TEM-1) affected fewer proteins' expression levels. Proteins involved in antibiotic resistance, cell membrane integrity, stress, and gene expression and unknown function proteins exhibited differential expression. The present study provides a framework for studying protein expression in response to antibiotic exposure and identifying the genomic, proteomic, and phenotypic impacts of resistance gene loss.
  •  
15.
  • Karami, Nahid, 1959, et al. (författare)
  • Identity of bla ctx-m carrying plasmids in sequential esbl-e. Coli isolates from patients with recurrent urinary tract infections
  • 2021
  • Ingår i: Microorganisms. - : MDPI AG. - 2076-2607. ; 9:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasmid-mediated multidrug resistance in E. coli is becoming increasingly prevalent. Considering this global threat to human health, it is important to understand how plasmid-mediated resistance spreads. From a cohort of 123 patients with recurrent urinary tract infections (RUTI) due to extended spectrum beta-lactamase (ESBL)-producing Escherichia coli (ESBL E. coli), only five events with a change of ESBL E. coli strain between RUTI episodes were identified. Their blaCTX-M encoding plasmids were compared within each pair of isolates using optical DNA mapping (ODM) and PCR-based replicon typing. Despite similar blaCTX-M genes and replicon types, ODM detected only one case with identical plasmids in the sequential ESBL E. coli strains, indicating that plasmid transfer could have occurred. For comparison, plasmids from seven patients with the same ESBL E. coli strain reoccurring in both episodes were analyzed. These plasmids (encoding blaCTX-M-3, blaCTX-M-14, and blaCTX-M-15 ) were unaltered for up to six months between recurrent infections. Thus, transmission of blaCTX-M plasmids appears to be a rare event during the course of RUTI. Despite the limited number (n = 23) of plasmids investigated, similar blaCTX-M-15 plasmids in unrelated isolates from different patients were detected, suggesting that some successful plasmids could be associated with specific strains, or are more easily transmitted.
  •  
16.
  • Karlsson, Roger, 1975, et al. (författare)
  • Discovery of Species-unique Peptide Biomarkers of Bacterial Pathogens by Tandem Mass Spectrometry-based Proteotyping
  • 2020
  • Ingår i: Molecular & Cellular Proteomics. - 1535-9476 .- 1535-9484. ; 19:3, s. 518-528
  • Tidskriftsartikel (refereegranskat)abstract
    • Mass spectrometry (MS) and proteomics offer comprehensive characterization and identification of microorganisms and discovery of protein biomarkers that are applicable for diagnostics of infectious diseases. The use of biomarkers for diagnostics is widely applied in the clinic and the use of peptide biomarkers is increasingly being investigated for applications in the clinical laboratory. Respiratory-tract infections are a predominant cause for medical treatment, although, clinical assessments and standard clinical laboratory protocols are time-consuming and often inadequate for reliable diagnoses. Novel methods, preferably applied directly to clinical samples, excluding cultivation steps, are needed to improve diagnostics of infectious diseases, provide adequate treatment and reduce the use of antibiotics and associated development of antibiotic resistance. This study applied nano-liquid chromatography (LC) coupled with tandem MS, with a bioinformatics pipeline and an in-house database of curated high-quality reference genome sequences to identify species-unique peptides as potential biomarkers for four bacterial pathogens commonly found in respiratory tract infections (RTIs): Staphylococcus aureus; Moraxella catarrhalis; Haemophilus influenzae and Streptococcus pneumoniae. The species-unique peptides were initially identified in pure cultures of bacterial reference strains, reflecting the genomic variation in the four species and, furthermore, in clinical respiratory tract samples, without prior cultivation, elucidating proteins expressed in clinical conditions of infection. For each of the four bacterial pathogens, the peptide biomarker candidates most predominantly found in clinical samples, are presented. Data are available via ProteomeXchange with identifier PXD014522. As proof-of-principle, the most promising species-unique peptides were applied in targeted tandem MS-analyses of clinical samples and their relevance for identifications of the pathogens, i.e. proteotyping, was validated, thus demonstrating their potential as peptide biomarker candidates for diagnostics of infectious diseases.
  •  
17.
  • Karlsson, Roger, 1975, et al. (författare)
  • Proteotyping bacteria: Characterization, differentiation and identification of pneumococcus and other species within the Mitis Group of the genus Streptococcus by tandem mass spectrometry proteomics
  • 2018
  • Ingår i: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 13:12
  • Tidskriftsartikel (refereegranskat)abstract
    • A range of methodologies may be used for analyzing bacteria, depending on the purpose and the level of resolution needed. The capability for recognition of species distinctions within the complex spectrum of bacterial diversity is necessary for progress in microbiological research. In clinical settings, accurate, rapid and cost-effective methods are essential for early and efficient treatment of infections. Characterization and identification of microorganisms, using, bottom-up proteomics, or "proteotyping", relies on recognition of species-unique or associated peptides, by tandem mass spectrometry analyses, dependent upon an accurate and comprehensive foundation of genome sequence data, allowing for differentiation of species, at amino acid-level resolution. In this study, the high resolution and accuracy of MS/MS-based proteotyping was demonstrated, through analyses of the three phylogenetically and taxonomically most closely-related species of the Mitis Group of the genus Streptococcus: i.e., the pathogenic species, Streptococcus pneumoniae (pneumococcus), and the commensal species, Streptococcus pseudopneumoniae and Streptococcus mitis. To achieve high accuracy, a genome sequence database used for matching peptides was created and carefully curated. Here, MS-based, bottom-up proteotyping was observed and confirmed to attain the level of resolution necessary for differentiating and identifying the most-closely related bacterial species, as demonstrated by analyses of species of the Streptococcus Mitis Group, even when S. pneumoniae were mixed with S. pseudopneumoniae and S. mitis, by matching and identifying more than 200 unique peptides for each species.
  •  
18.
  • Kondori, Nahid, 1967, et al. (författare)
  • Mass Spectrometry Proteotyping-Based Detection and Identification of Staphylococcus aureus, Escherichia coli, and Candida albicans in Blood
  • 2021
  • Ingår i: Frontiers in Cellular and Infection Microbiology. - : Frontiers Media SA. - 2235-2988. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Bloodstream infections (BSIs), the presence of microorganisms in blood, are potentially serious conditions that can quickly develop into sepsis and life-threatening situations. When assessing proper treatment, rapid diagnosis is the key; besides clinical judgement performed by attending physicians, supporting microbiological tests typically are performed, often requiring microbial isolation and culturing steps, which increases the time required for confirming positive cases of BSI. The additional waiting time forces physicians to prescribe broad-spectrum antibiotics and empirically based treatments, before determining the precise cause of the disease. Thus, alternative and more rapid cultivation-independent methods are needed to improve clinical diagnostics, supporting prompt and accurate treatment and reducing the development of antibiotic resistance. In this study, a culture-independent workflow for pathogen detection and identification in blood samples was developed, using peptide biomarkers and applying bottom-up proteomics analyses, i.e., so-called "proteotyping". To demonstrate the feasibility of detection of blood infectious pathogens, using proteotyping, Escherichia coli and Staphylococcus aureus were included in the study, as the most prominent bacterial causes of bacteremia and sepsis, as well as Candida albicans, one of the most prominent causes of fungemia. Model systems including spiked negative blood samples, as well as positive blood cultures, without further culturing steps, were investigated. Furthermore, an experiment designed to determine the incubation time needed for correct identification of the infectious pathogens in blood cultures was performed. The results for the spiked negative blood samples showed that proteotyping was 100- to 1,000-fold more sensitive, in comparison with the MALDI-TOF MS-based approach. Furthermore, in the analyses of ten positive blood cultures each of E. coli and S. aureus, both the MALDI-TOF MS-based and proteotyping approaches were successful in the identification of E. coli, although only proteotyping could identify S. aureus correctly in all samples. Compared with the MALDI-TOF MS-based approaches, shotgun proteotyping demonstrated higher sensitivity and accuracy, and required significantly shorter incubation time before detection and identification of the correct pathogen could be accomplished.
  •  
19.
  •  
20.
  • Méndez, Valentina, et al. (författare)
  • Comparative Genomics of Pathogenic Clavibacter michiganensis subsp. michiganensis Strains from Chile Reveals Potential Virulence Features for Tomato Plants.
  • 2020
  • Ingår i: Microorganisms. - : MDPI AG. - 2076-2607. ; 8:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The genus Clavibacter has been associated largely with plant diseases. The aims of this study were to characterize the genomes and the virulence factors of Chilean C. michiganensis subsp. michiganensis strains VL527, MSF322 and OP3, and to define their phylogenomic positions within the species, Clavibacter michiganensis. VL527 and MSF322 genomes possess 3,396,632 and 3,399,199 bp, respectively, with a pCM2-like plasmid in strain VL527, with pCM1- and pCM2-like plasmids in strain MSF322. OP3 genome is composed of a chromosome and three plasmids (including pCM1- and pCM2-like plasmids) of 3,466,104 bp. Genomic analyses confirmed the phylogenetic relationships of the Chilean strains among C.michiganensis subsp. michiganensis and showed their low genomic diversity. Different virulence levels in tomato plants were observable. Phylogenetic analyses of the virulence factors revealed that the pelA1 gene (chp/tomA region)-that grouped Chilean strains in three distinct clusters-and proteases and hydrolases encoding genes, exclusive for each of the Chilean strains, may be involved in these observed virulence levels. Based on genomic similarity (ANIm) analyses, a proposal to combine and reclassify C. michiganensis subsp. phaseoli and subsp. chilensis at the species level, as C. phaseoli sp. nov., as well as to reclassify C. michiganensis subsp. californiensis as the species C. californiensis sp. nov. may be justified.
  •  
21.
  •  
22.
  • Pain, M., et al. (författare)
  • Staphylococcus borealis sp. nov., isolated from human skin and blood
  • 2020
  • Ingår i: International journal of systematic and evolutionary microbiology. - : Microbiology Society. - 1466-5026 .- 1466-5034. ; 70:12, s. 6067-6078
  • Tidskriftsartikel (refereegranskat)abstract
    • When analysing a large cohort of Staphylococcus haemolyticus, using whole-genome sequencing, five human isolates (four from the skin and one from a blood culture) with aberrant phenotypic and genotypic traits were identified. They were phenotypically similar with yellow colonies, nearly identical 16S rRNA gene sequences and initially speciated as S. haemolyticus based on 16S rRNA gene sequence and MALDI-TOF MS. However, compared to S. haemolyticus, these five strains demonstrate: (i) considerable phylogenetic distance with an average nucleotide identity <95 % and inferred DNA-DNA hybridization <70%; (ii) a pigmented phenotype; (iii) urease production; and (iv) different fatty acid composition. Based on the phenotypic and genotypic results, we conclude that these strains represent a novel species, for which the name Staphylococcus borealis sp. nov. is proposed. The novel species belong to the genus Staphylococcus and is coagulase- and oxidase-negative and catalase-positive. The type strain, 51-48(T), is deposited in the Culture Collection University of Gothenburg (CCUG 73747(T)) and in the Spanish Type Culture Collection (CECT 30011(T)).
  •  
23.
  •  
24.
  •  
25.
  • Salva-Serra, Francisco, 1989, et al. (författare)
  • Comparative genomics of Stutzerimonas balearica (Pseudomonas balearica): diversity, habitats, and biodegradation of aromatic compounds
  • 2023
  • Ingår i: Frontiers in Microbiology. - 1664-302X. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Stutzerimonas balearica (Pseudomonas balearica) has been found principally in oil-polluted environments. The capability of S. balearica to thrive from the degradation of pollutant compounds makes it a species of interest for potential bioremediation applications. However, little has been reported about the diversity of S. balearica. In this study, genome sequences of S. balearica strains from different origins were analyzed, revealing that it is a diverse species with an open pan-genome that will continue revealing new genes and functionalities as the genomes of more strains are sequenced. The nucleotide signatures and intra- and inter-species variation of the 16S rRNA genes of S. balearica were reevaluated. A strategy of screening 16S rRNA gene sequences in public databases enabled the detection of 158 additional strains, of which only 23% were described as S. balearica. The species was detected from a wide range of environments, although mostly from aquatic and polluted environments, predominantly related to petroleum oil. Genomic and phenotypic analyses confirmed that S. balearica possesses varied inherent capabilities for aromatic compounds degradation. This study increases the knowledge of the biology and diversity of S. balearica and will serve as a basis for future work with the species.
  •  
26.
  • Salvà-Serra, Francisco, 1989, et al. (författare)
  • Complete genome sequences of Streptococcus pyogenes type strain reveal 100%-match between PacBio-solo and Illumina-Oxford Nanopore hybrid assemblies
  • 2020
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first complete, closed genome sequences of Streptococcus pyogenes strains NCTC 8198(T) and CCUG 4207(T), the type strain of the type species of the genus Streptococcus and an important human pathogen that causes a wide range of infectious diseases. S. pyogenes NCTC 8198(T) and CCUG 4207(T) are derived from deposit of the same strain at two different culture collections. NCTC 8198(T) was sequenced, using a PacBio platform; the genome sequence was assembled de novo, using HGAP. CCUG 4207(T) was sequenced and a de novo hybrid assembly was generated, using SPAdes, combining Illumina and Oxford Nanopore sequence reads. Both strategies yielded closed genome sequences of 1,914,862 bp, identical in length and sequence identity. Combining short-read Illumina and long-read Oxford Nanopore sequence data circumvented the expected error rate of the nanopore sequencing technology, producing a genome sequence indistinguishable to the one determined with PacBio. Sequence analyses revealed five prophage regions, a CRISPR-Cas system, numerous virulence factors and no relevant antibiotic resistance genes. These two complete genome sequences of the type strain of S. pyogenes will effectively serve as valuable taxonomic and genomic references for infectious disease diagnostics, as well as references for future studies and applications within the genus Streptococcus.
  •  
27.
  • Salvà-Serra, Francisco, 1989, et al. (författare)
  • Draft Genome Sequence of Streptococcus gordonii Type Strain CCUG 33482T.
  • 2016
  • Ingår i: Genome Announcements. - 2169-8287. ; 4:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Streptococcus gordoniitype strain CCUG 33482(T)is a member of theStreptococcus mitisgroup, isolated from a case of subacute bacterial endocarditis. Here, we report the draft genome sequence ofS. gordoniiCCUG 33482(T), composed of 41 contigs of a total size of 2.15 Mb with 2,061 annotated coding sequences.
  •  
28.
  •  
29.
  • Salvà-Serra, Francisco, 1989, et al. (författare)
  • Proteotyping for Rapid Identifications of Clinically-Relevant Infectious Bacteria
  • 2016
  • Ingår i: Programme of the XXXV ECCO Meeting 2016.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Aims The development and application of novel identifications and diagnostics of pathogenic bacteria, virulence and antibiotic resistance factors, to enhance treatment of infectious diseases and to address the pandemic of antimicrobial resistance (1). To apply mass spectrometry (MS)-based ‘proteotyping’, a rapid proteomic-genomic method to identify and use cell biomarkers for pathogen identification and detection of targeted metabolic functions (www.tailored-treatment.eu/). Methods and results The proteins of intact bacterial cells or cell-fractions are bound to a membrane surface, using the patented (WO2006068619) Lipid-based Protein Immobilization (LPI) technology. Peptides are generated from bound proteins, using enzymatic digestion, separated and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The MS profiles are compared to those of reference peptide sequences and the peptide sequences are compared against a curated in-house database of genome sequences. Conclusions Analyses of bacterial cell peptides identified protein biomarkers of infectious bacteria, at the species-level, virulence and antibiotic resistance factors. Model samples have been ‘proteotyped’, using well-characterized reference strains, and an enhanced whole-genome sequence database, to demonstrate ‘proof-of-concept’, and the method been applied directly to the analyses of clinical samples, without prior cultivation. Significance of study Proteotyping demonstrates the potential for proteomics-based analyses for detecting expressed genomic markers of bacterial species, virulence and antibiotic resistance, for the identifications and diagnostics of infectious microorganisms. References Cohen A, Bont L, Engelhard D, Moore E, Fernández D, Kreisberg-Greenblatt R, Oved K, Eden E, Hayes J (2015). A multifaceted 'omics' approach for addressing the challenge of antimicrobial resistance. Future Microbiol. 10:365-376
  •  
30.
  • Salvà-Serra, Francisco, 1989, et al. (författare)
  • Responses of carbapenemase-producing and non-producing carbapenem-resistant Pseudomonas aeruginosa strains to meropenem revealed by quantitative tandem mass spectrometry proteomics
  • 2023
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media SA. - 1664-302X. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Pseudomonas aeruginosa is an opportunistic pathogen with increasing incidence of multidrug-resistant strains, including resistance to last-resort antibiotics, such as carbapenems. Resistances are often due to complex interplays of natural and acquired resistance mechanisms that are enhanced by its large regulatory network. This study describes the proteomic responses of two carbapenem-resistant P. aeruginosa strains of high-risk clones ST235 and ST395 to subminimal inhibitory concentrations (sub-MICs) of meropenem by identifying differentially regulated proteins and pathways. Strain CCUG 51971 carries a VIM-4 metallo-beta-lactamase or 'classical' carbapenemase; strain CCUG 70744 carries no known acquired carbapenem-resistance genes and exhibits 'non-classical' carbapenem-resistance. Strains were cultivated with different sub-MICs of meropenem and analyzed, using quantitative shotgun proteomics based on tandem mass tag (TMT) isobaric labeling, nano-liquid chromatography tandem-mass spectrometry and complete genome sequences. Exposure of strains to sub-MICs of meropenem resulted in hundreds of differentially regulated proteins, including beta-lactamases, proteins associated with transport, peptidoglycan metabolism, cell wall organization, and regulatory proteins. Strain CCUG 51971 showed upregulation of intrinsic beta-lactamases and VIM-4 carbapenemase, while CCUG 70744 exhibited a combination of upregulated intrinsic beta-lactamases, efflux pumps, penicillin-binding proteins and downregulation of porins. All components of the H1 type VI secretion system were upregulated in strain CCUG 51971. Multiple metabolic pathways were affected in both strains. Sub-MICs of meropenem cause marked changes in the proteomes of carbapenem-resistant strains of P. aeruginosa exhibiting different resistance mechanisms, involving a wide range of proteins, many uncharacterized, which might play a role in the susceptibility of P. aeruginosa to meropenem.
  •  
31.
  • Svetlicic, E., et al. (författare)
  • Genomic characterization and assessment of pathogenic potential of Legionella spp. isolates from environmental monitoring
  • 2023
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media SA. - 1664-302X. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Several species in the genus Legionella are known to cause an acute pneumonia when the aerosols containing the bacteria from man-made water systems are inhaled. The disease is usually caused by Legionella pneumophila, but other species have been implicated in the infection. The disease is frequently manifested as an outbreak, which means several people are affected when exposed to the common source of Legionella contamination. Therefor environmental surveillance which includes isolation and identification of Legionella is performed routinely. However, usually no molecular or genome-based methods are employed in further characterization of the isolates during routine environmental monitoring. During several years of such monitoring, isolates from different geographical locations were collected and 39 of them were sequenced by hybrid de novo approach utilizing short and long sequencing reads. In addition, the isolates were typed by standard culture and MALDI-TOF method. The sequencing reads were assembled and annotated to produce high-quality genomes. By employing discriminatory genome typing, four potential new species in the Legionella genus were identified, which are yet to be biochemically and morphologically characterized. Moreover, functional annotations concerning virulence and antimicrobial resistance were performed on the sequenced genomes. The study contributes to the knowledge on little-known non-pneumophila species present in man-made water systems and establishes support for future genetic relatedness studies as well as understanding of their pathogenic potential.
  •  
32.
  • Undabarrena, A., et al. (författare)
  • Complete genome sequence of the marine Rhodococcus sp H-CA8f isolated from Comau fjord in Northern Patagonia, Chile
  • 2018
  • Ingår i: Marine Genomics. - : Elsevier BV. - 1874-7787. ; 40, s. 13-17
  • Tidskriftsartikel (refereegranskat)abstract
    • Rhodococcus sp. H-CA8f was isolated from marine sediments obtained from the Comau fjord, located in Northern Chilean Patagonia. Whole-genome sequencing was achieved using PacBio RS II platform, comprising one closed, complete chromosome of 6,19 Mbp with a 62.45% G + C content. The chromosome harbours several metabolic pathways providing a wide catabolic potential, where the upper biphenyl route is described. Also, Rhodococcus sp. H-CA8f bears one linear mega-plasmid of 301 Kbp and 62.34% of G + C content, where genomic analyses demonstrated that it is constituted mostly by putative ORFs with unknown functions, representing a novel genetic feature. These genetic characteristics provide relevant insights regarding Chilean marine actinobacterial strains.
  •  
33.
  • Valenzuela, M., et al. (författare)
  • Analyses of Virulence Genes of Clavibacter michiganensis subsp. michiganensis Strains Reveal Heterogeneity and Deletions That Correlate with Pathogenicity
  • 2021
  • Ingår i: Microorganisms. - : MDPI AG. - 2076-2607. ; 9:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Clavibacter michiganensis subsp. michiganensis (Cmm) is the causal agent of bacterial canker of tomato. Differences in virulence between Cmm strains have been reported. The aim of this study was the characterization of nine Cmm strains isolated in Chile to reveal the causes of their differences in virulence. The virulence assays in tomato seedlings revealed different levels of severity associated with the strains, with two highly virulent strains and one causing only mild symptoms. The two most virulent showed increased cellulase activity, and no cellulase activity was observed in the strain causing mild symptoms. In three strains, including the two most virulent strains, PCR amplification of the 10 virulence genes analyzed was observed. In the strain causing mild symptoms, no amplification was observed for five genes, including celA. Sequence and cluster analyses of six virulence genes grouped the strains, as has been previously reported, except for gene pelA1. Gene sequence analysis from the genomes of five Chilean strains revealed the presence of deletions in the virulence genes, celB, xysA, pat-1, and phpA. The results of this study allow us to establish correlations between the differences observed in disease severity and the presence/absence of genes and deletions not previously reported.
  •  
34.
  • Wranne, Moa, 1986, et al. (författare)
  • Comparison of CTX-M encoding plasmids present during the early phase of the ESBL pandemic in western Sweden
  • 2024
  • Ingår i: Scientific Reports. - 2045-2322 .- 2045-2322. ; 14:1, s. 11880-
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasmids encoding blaCTX-M genes have greatly shaped the evolution of E. coli producing extended-spectrum beta-lactamases (ESBL-E. coli) and adds to the global threat of multiresistant bacteria by promoting horizontal gene transfer (HGT). Here we screened the similarity of 47 blaCTX-M -encoding plasmids, from 45 epidemiologically unrelated and disperse ESBL-E. coli strains, isolated during the early phase (2009-2014) of the ESBL pandemic in western Sweden. Using optical DNA mapping (ODM), both similar and rare plasmids were identified. As many as 57% of the plasmids formed five ODM-plasmid groups of at least three similar plasmids per group. The most prevalent type (28%, IncIl, pMLST37) encoded blaCTX-M-15 (n = 10), blaCTX-M-3 (n = 2) or blaCTX-M-55 (n = 1). It was found in isolates of various sequence types (STs), including ST131. This could indicate ongoing local HGT as whole-genome sequencing only revealed similarities with a rarely reported, IncIl plasmid. The second most prevalent type (IncFII/FIA/FIB, F1:A2:B20) harboring blaCTX-M-27, was detected in ST131-C1-M27 isolates, and was similar to plasmids previously reported for this subclade. The results also highlight the need for local surveillance of plasmids and the importance of temporospatial epidemiological links so that detection of a prevalent plasmid is not overestimated as a potential plasmid transmission event in outbreak investigations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-34 av 34
Typ av publikation
tidskriftsartikel (32)
konferensbidrag (2)
Typ av innehåll
refereegranskat (32)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Jaen-Luchoro, Daniel (34)
Moore, Edward R.B. 1 ... (26)
Salvà-Serra, Francis ... (24)
Karlsson, Roger, 197 ... (12)
Gonzales-Siles, Luci ... (8)
Jakobsson, Hedvig E. (7)
visa fler...
Piñeiro-Iglesias, Be ... (5)
Kristiansson, Erik, ... (4)
Boulund, Fredrik, 19 ... (4)
Karami, Nahid, 1959 (4)
Åhrén, Christina (4)
Karlsson, A. (3)
Mendéz, V. (3)
Skovbjerg, Susann, 1 ... (3)
Alves, G (2)
Thorsell, Annika, 19 ... (2)
Westerlund, Fredrik, ... (2)
Ogurtsov, A. (2)
Andersson, Björn, 19 ... (2)
Yu, Y. K. (2)
Karlsson, R (2)
Kesarimangalam, Srir ... (2)
Bennasar-Figueras, A ... (2)
Seguí, Carolina (2)
Busquets, Antonio (2)
Gomila, Margarita (2)
Lalucat, Jorge (2)
Wolf, J. (1)
Farewell, Anne, 1961 (1)
Mijakovic, Ivan, 197 ... (1)
Engstrand, Lars (1)
Alexander, S (1)
Klingenberg, C (1)
Gonzalez, M. (1)
Adlerberth, Ingegerd ... (1)
Warringer, Jonas, 19 ... (1)
Graf, Fabrice (1)
Palm, Martin (1)
Tång Hallbäck, Erika ... (1)
Wennerås, Christine, ... (1)
Thorell, Kaisa, 1983 (1)
Hernandez, L (1)
Ramírez, Antonio (1)
Jers, C. (1)
Cavanagh, J. P. (1)
Grankvist, A. (1)
Flach, Carl-Fredrik, ... (1)
Johnning, Anna, 1985 (1)
Aliaga, Francisco (1)
Samuelsson, E (1)
visa färre...
Lärosäte
Göteborgs universitet (33)
Chalmers tekniska högskola (6)
RISE (2)
Karolinska Institutet (2)
Språk
Engelska (34)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (25)
Naturvetenskap (18)
Lantbruksvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy