SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jabbari Sarah 1981 ) "

Sökning: WFRF:(Jabbari Sarah 1981 )

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • JABBARI, SARAH, 1981- (författare)
  • Origin of solar surface activity and sunspots
  • 2014
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In the last few years, there has been significant progress in the development of a new model for explaining magnetic flux concentrations, by invoking the negative effective magnetic pressure instability (NEMPI) in a highly stratified turbulent plasma. According to this model, the suppression of the turbulent pressure by a large-scale magnetic field leads to a negative contribution of turbulence to the effective magnetic pressure (the sum of non-turbulent and turbulent contributions). For large magnetic Reynolds numbers the negative turbulence contribution is large enough, so that the effective magnetic pressure is negative, which causes a large-scale instability (NEMPI). One of the potential applications of NEMPI is to explain the formation of active regions on the solar surface. On the other hand, the solar dynamo is known to be responsible for generating large-scale magnetic field in the Sun. Therefore, one step toward developing a more realistic model is to study a system where NEMPI is excited from a dynamo-generated magnetic field. In this context, the excitation of NEMPI in spherical geometry was studied here from a mean- field dynamo that generates the background magnetic field. Previous studies have shown that for NEMPI to work, the background field can neither be too weak nor too strong. To satisfy this condition for the dynamo-generated magnetic field, we adopt an “alpha squared dynamo” with an α effect proportional to the cosine of latitude and taking into account alpha quenching. We performed these mean-field simulations (MFS) using the Pencil Code. The results show that dynamo and NEMPI can work at the same time such that they become a coupled system. This coupled system has then been studied separately in more detail in plane geometry where we used both mean-field simulations and direct numerical simulations (DNS).Losada et al. (2013) showed that rotation suppresses NEMPI. However, we now find that for higher Coriolis numbers, the growth rate increase again. This implies that there is another source that provides the excitation of an instability. This mechanism acts at the same time as NEMPI or even after NEMPI was suppressed. One possibility is that for higher Coriolis numbers, an α2 dynamo is activated and causes the observed growth rate. In other words, for large values of the Coriolis numbers we again deal with the coupled system of NEMPI and mean-field dynamo. Both, MFS and DNS confirm this assumption. Using the test-field method, we also calculated the dynamo coefficients for such a system which again gave results consistent with previous studies. There was a small difference though, which is interpreted as being due to the larger scale separation that we have used in our simulations.Another important finding related to NEMPI was the result of Brandenburg et al. (2013), that in the presence of a vertical magnetic field NEMPI results in magnetic flux concentrations of equipartition field strength. This leads to the formation of a magnetic spot. This finding stimulated us to investigate properties of NEMPI for imposed vertical fields in more detail. We used MFS and DNS together with implicit large eddy simulations (ILES) to confirm that an initially uniform weak vertical magnetic field will lead to a circular magnetic spot of equipartition field strength if the plasma is highly stratified and scale separation is large enough. We determined the parameter ranges for NEMPI for a vertical imposed field. Our results show that, as we change the magnitude of the vertical imposed field, the growth rate and geometry of the flux concentrations is unchanged, but their position changes. In particular, by increasing the imposed field strength, the magnetic concentration forms deeper down in the domain.
  •  
2.
  • Jabbari, Sarah, 1981- (författare)
  • Origin of solar surface activity and sunspots
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Sunspots and active regions are two of the many manifestations of the solar magnetic field. This field plays an important role in causing phenomena such as coronal mass ejections, flares, and coronal heating. Therefore, it is important to study the origin of sunspots and active regions and determine the underlying mechanism which creates them. It is believed that flux tubes rising from the bottom of the convection zone can create sunspots. However, there are still unanswered questions about this model. In particular, flux tubes are expected to expand as they rise, hence their strength weakens and some sort of reamplification mechanism must complement this model to match the observational properties of sunspots. To compensate for the absence of such an amplification mechanism, the field strength of the flux tubes, when at the bot- tom of the convection zone, must be far stronger than present dynamo models can explain.In the last few years, there has been significant progress toward a new model of magnetic field concentrations based on the negative effective mag- netic pressure instability (NEMPI) in a highly stratified turbulent plasma. NEMPI is a large-scale instability caused by a negative contribution to the total mean-field pressure due to the suppression of the total turbulent pressure by a large-scale magnetic field. In this thesis, I study for the first time NEMPI in the presence of a dynamo-generated magnetic field in both spherical and Carte- sian geometries. The results of mean-field simulations in spherical geometry show that NEMPI and the dynamo instability can act together at the same time such that we deal with a coupled system involving both NEMPI and dynamo effects simultaneously. I also consider a particular two-layer model which was previously found to lead to the formation of bipolar magnetic structures with super-equipartition strength in the presence of a dynamo-generated field. In this model, the turbulence is forced in the entire domain, but the forcing is made helical in the lower part of the domain, and non-helical in the upper part. The study of such a system in spherical geometry showed that, when the stratification is strong enough, intense bipolar regions form and, as time passes, they expand, merge and create giant structures. To understand the underlying mechanism of the formation of such intense, long-lived bipolar structures with a sharp boundary, we performed a systematic numerical study of this model in plane parallel geometry by varying the magnetic Reynolds number, the scale separation ratio, and Coriolis number. Finally, I investigate the formation of the current sheet between bipolar regions and reconnection of oppositely orientated magnetic field lines and demonstrate that for large Lundquist numbers, S, the reconnection rate is nearly independent of S – in agreement with recent studies in identical settings.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy