SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jabiol Jeremy) "

Sökning: WFRF:(Jabiol Jeremy)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Frainer, André, 1982-, et al. (författare)
  • Shifts in ecosystem functioning of a detritus-based foodweb explained by imbalances between resource and consumer stoichiometry
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The stoichiometric imbalance between consumers and resources can affect both resource processing rates and consumer growth, and thus constitutes a potentially important driver of ecosystem functioning. We hypothesized that imbalances in nitrogen (N), phosphorus (P), and carbon (C) concentrations between detritus and detritivores would have contrasting effects on two related ecosystem processes, with stronger imbalances triggering compensatory feeding while simultaneously constraining detritivore growth. In a stream field experiment, we found that growth of detritivores was constrained by stoichiometric imbalances mostly driven by N limitation, but there was no evidence for compensatory feeding. However, when offered diets of mixed litter with varying N:P and C:N, detritivores preferred the litter species showing the closest match to their own N:P and C:N, which drove accelerated processing of the preferred species in mixture. Our results highlight the role of stoichiometric imbalances between consumers and resources in regulating ecosystem processes.
  •  
2.
  • Frainer, André, et al. (författare)
  • Stoichiometric imbalances between detritus and detritivores are related to shifts in ecosystem functioning
  • 2016
  • Ingår i: Oikos. - : Wiley. - 0030-1299 .- 1600-0706. ; 125:6, s. 861-871
  • Tidskriftsartikel (refereegranskat)abstract
    • How are resource consumption and growth rates of litter-consuming detritivores affected by imbalances between consumer and litter C:N:P ratios? To address this question, we offered leaf litter as food to three aquatic detritivore species, which represent a gradient of increasing body N: P ratios: a crustacean, a caddisfly and a stonefly. The detritivores were placed in microcosms and submerged in a natural stream. Four contrasting leaf species were offered, both singly and in two-species mixtures, to obtain different levels of stoichiometric imbalance between the resources and their consumers. The results suggest that detritivore growth was constrained by N rather than C or P, even though 1) the N: P ratios of the consumers' body tissue was relatively low and 2) microbial leaf conditioning during the experiment reduced the N:P imbalance between detritivores and leaf litter. This surprisingly consistent N limitation may be a consequence of cumulative N-demand arising from the production of N-rich chitin in the exoskeletons of all three consumer species, which is lost during regular moults, in addition to N-demand for silk production by the caddisfly. These N requirements are not commonly quantified in stoichiometric analyses of arthropod consumers. There was no evidence for compensatory feeding, but when offered mixed-species litter varying in C:N:P ratios, detritivores consumed more of the litter species showing the highest N:P and lowest C:N ratio, accelerating the mass loss of the preferred leaf species in the litter mixture. These results show that imbalances in consumer-resource stoichiometry can have contrasting effects on coupled processes, highlighting a challenge in developing a mechanistic understanding of the role of stoichiometry in regulating ecosystem processes such as leaf litter decomposition.
  •  
3.
  • Handa, I. Tanya, et al. (författare)
  • Consequences of biodiversity loss for litter decomposition across biomes
  • 2014
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 509:7499, s. 218-221
  • Tidskriftsartikel (refereegranskat)abstract
    • The decomposition of dead organic matter is a major determinant of carbon and nutrient cycling in ecosystems, and of carbon fluxes between the biosphere and the atmosphere(1-3). Decomposition is driven by a vast diversity of organisms that are structured in complex food webs(2,4). Identifying the mechanisms underlying the effects of biodiversity on decomposition is critical(4-6) given the rapid loss of species worldwide and the effects of this loss on human well-being(7-9). Yet despite comprehensive syntheses of studies on how biodiversity affects litter decomposition(4-6,10), key questions remain, including when, where and how biodiversity has a role and whether general patterns and mechanisms occur across ecosystems and different functional types of organism(4,9-12). Here, in field experiments across five terrestrial and aquatic locations, ranging from the subarctic to the tropics, we show that reducing the functional diversity of decomposer organisms and plant litter types slowed the cycling of litter carbon and nitrogen. Moreover, we found evidence of nitrogen transfer from the litter of nitrogen-fixing plants to that of rapidly decomposing plants, but not between other plant functional types, highlighting that specific interactions in litter mixtures control carbon and nitrogen cycling during decomposition. The emergence of this general mechanism and the coherence of patterns across contrasting terrestrial and aquatic ecosystems suggest that biodiversity loss has consistent consequences for litter decomposition and the cycling of major elements on broad spatial scales.
  •  
4.
  • Jabiol, Jeremy, et al. (författare)
  • Diversity patterns of leaf-associated aquatic hyphomycetes along a broad latitudinal gradient
  • 2013
  • Ingår i: Fungal ecology. - : Elsevier. - 1754-5048 .- 1878-0083. ; 6:5, s. 439-448
  • Tidskriftsartikel (refereegranskat)abstract
    • Information about the global distribution of aquatic hyphomycetes is scarce, despite the primary importance of these fungi in stream ecosystem functioning. In particular, the relationship between their diversity and latitude remains unclear, due to a lack of coordinated surveys across broad latitudinal ranges. This study is a first report on latitudinal patterns of aquatic hyphomycete diversity associated with native leaf-litter species in five streams located along a gradient extending from the subarctic to the tropics. Exposure of leaf litter in mesh bags of three different mesh sizes facilitated assessing the effects of including or excluding different size-classes of litter-consuming invertebrates. Aquatic hyphomycete evenness was notably constant across all sites, whereas species richness and diversity, expressed as the Hill number, reached a maximum at mid-latitudes (Mediterranean and temperate streams). These latitudinal patterns were consistent across litter species, despite a notable influence of litter identity on fungal communities at the local scale. As a result, the bell-shaped distribution of species richness and Hill diversity deviated markedly from the latitudinal patterns of most other groups of organisms. Differences in the body-size distribution of invertebrate communities colonizing the leaves had no effect on aquatic hyphomycete species richness, Hill diversity or evenness, but invertebrates could still influence fungal communities by depleting litter, an effect that was not captured by the design of our experiment. (C) 2013 Elsevier Ltd and The British Mycological Society. All rights reserved.
  •  
5.
  • Robbins, Caleb J., et al. (författare)
  • Nutrient and stoichiometric time series measurements of decomposing coarse detritus in freshwaters
  • 2023
  • Ingår i: Ecology. - : John Wiley & Sons. - 0012-9658 .- 1939-9170. ; 104:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Decomposition of coarse detritus (e.g., dead organic matter larger than ~1 mm such as leaf litter or animal carcasses) in freshwater ecosystems is well described in terms of mass loss, particularly as rates that compress mass loss into one number (e.g., a first-order decay coefficient, or breakdown rate, “k”); less described are temporal changes in the elemental composition of these materials during decomposition, with important implications for elemental cycling from microbes to ecosystems. This stands in contrast with work in the terrestrial realm, where a focus on detrital elemental cycling has provided a sharper mechanistic understanding of decomposition, especially with specific processes such as immobilization and mineralization. Notably, freshwater ecologists often measure carbon (C), nitrogen (N), and phosphorus (P), and their stoichiometric ratios in decomposing coarse materials, including carcasses, wood, leaf litter, and more, but these measurements remain piecemeal. These detrital nutrients are measurements of the entire detrital–microbial complex and are integrative of numerous processes, especially nutrient immobilization and mineralization, and associated microbial growth and death. Thus, data relevant to an elemental, mechanistically focused decomposition ecology are available in freshwaters, but have not been fully applied to that purpose. We synthesized published detrital nutrient and stoichiometry measurements at a global scale, yielding 4038 observations comprising 810 decomposition time series (i.e., measurements within a defined cohort of decomposing material through time) to build a basis for understanding the temporality of elemental content in freshwater detritus. Specifically, the dataset focuses on temporally and ontogenetically (mass loss) explicit measurements of N, P, and stoichiometry (C:N, C:P, N:P). We also collected ancillary data, including detrital characteristics (e.g., species, lignin content), water physiochemistry, geographic location, incubation system type, and methodological variables (e.g., bag mesh size). These measurements are important to unlocking mechanistic insights into detrital ontogeny (the temporal trajectory of decomposing materials) that can provide a deeper understanding of heterotroph-driven C and nutrient cycling in freshwaters. Moreover, these data can help to bridge aquatic and terrestrial decomposition ecology, across plant or animal origin. By focusing on temporal trajectories of elements, this dataset facilitates cross-ecosystem comparisons of fundamental decomposition controls on elemental fluxes. It provides a strong starting point (e.g., via modeling efforts) for comparing processes such as immobilization and mineralization that are understudied in freshwaters. Time series from decomposing leaf litter, particularly in streams, are common in the dataset, but we also synthesized ontogenies of animal-based detritus, which tend to decompose rapidly compared with plant-based detritus that contains high concentrations of structural compounds such as lignin and cellulose. Although animal-based data were rare, comprising only three time series, their inclusion in this dataset underscores the opportunities to develop an understanding of decomposition that encompasses all detrital types, from carrion to leaf litter. There are no copyright or proprietary restrictions on the dataset; please cite this data paper when reusing these materials.
  •  
6.
  • Robbins, Caleb J., et al. (författare)
  • Nutrient and stoichiometry dynamics of decomposing litter in stream ecosystems : a global synthesis
  • 2023
  • Ingår i: Ecology. - : John Wiley & Sons. - 0012-9658 .- 1939-9170. ; 104:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Decomposing organic matter forms a substantial resource base, fueling the biogeochemical function and secondary production of most aquatic ecosystems. However, detrital N (nitrogen) and P (phosphorus) dynamics remain relatively unexplored in aquatic ecosystems relative to terrestrial ecosystems, despite fundamentally linking microbial processes to ecosystem function across broad spatial scales. We synthesized 217 published time series of detrital carbon (C), N, P, and their stoichiometric ratios (C:N, C:P, N:P) from stream ecosystems to analyze the temporal nutrient dynamics of decomposing litter using generalized additive models. Model results indicated that detritus was a net source of N (irrespective of inorganic or organic form) to the environment, regardless of initial N content. In contrast, P sink/source dynamics were more strongly influenced by the initial P content, in which P-poor litters were sinks for nutrients until these shifted to net P mineralization after ~40% mass loss. However, large variations surrounded both the N and P predictions, suggesting the importance of nonmicrobial factors such as fragmentation by invertebrates. Detrital C:N ratios converged and became more similar toward the end of the decomposition, suggesting predictable microbial functional effects throughout detrital ontogeny. C:P and N:P ratios also converged to some degree, but these model predictions were less robust than for C:N, due in part to the lower number of published detrital C:P time series. The explorations of environmental covariate effects were frequently limited by a few coincident covariate measurements across studies, but temperature, N availability, and P tended to accelerate the existing ontogenetic patterns in C:N. Our analysis helps to unite organic matter decomposition across aquatic–terrestrial boundaries by describing the basic patterns of elemental flows catalyzed by decomposition in streams, and points to a research agenda with which to continue addressing gaps in our knowledge of detrital nutrient dynamics across ecosystems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy