SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jacobsen Sten Eirik W.) "

Sökning: WFRF:(Jacobsen Sten Eirik W.)

  • Resultat 1-50 av 99
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Buitenhuis, M, et al. (författare)
  • Differential regulation of granulopoiesis by the basic helix-loop-helix transcriptional inhibitors Id1 and Id2
  • 2005
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 105:11, s. 4272-4281
  • Tidskriftsartikel (refereegranskat)abstract
    • Inhibitor of DNA binding (Id) proteins function as inhibitors of members of the basic helix-loop-helix family of transcription factors and have been demonstrated to play an important role in regulating lymphopoiesis. However, the role of these proteins in regulation of myelopoiesis is currently unclear. In this study, we have investigated the role of Id1 and Id2 in the regulation of granulopoiesis. Id1 expression was initially upregulated during early granulopoiesis, which was then followed by a decrease in expression during final maturation. In contrast, Id2 expression was up-regulated in terminally differentiated granulocytes. In order to determine whether Id expression plays a critical role in regulating granulopoiesis, Id1 and Id2 were ectopically expressed in CD34(+) cells by retroviral transduction. Our experiments demonstrate that constitutive expression of Id1 inhibits eosinophil development, whereas in contrast neutrophil differentiation was modestly enhanced. Constitutive Id2 expression accelerates final maturation of both eosinophils and neutrophils, whereas inhibition of Id2 expression blocks differentiation of both lineages. Transplantation of beta 2-microglobulin(-/-) nonobese diabetic severe combined immunodeficient (NOD/SCID) mice with CD34(+) cells ectopically expressing Id1 resulted in enhanced neutrophil development, whereas ectopic expression of Id2 induced both eosinophil and neutrophil development. These data demonstrate that both Id1 and Id2 play a critical, although differential role in granulopolesis.
  •  
2.
  • Breitbach, Martin, et al. (författare)
  • Potential risks of bone marrow cell transplantation into infarcted hearts
  • 2007
  • Ingår i: Blood. - Washington, DC : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 110:4, s. 1362-1369
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellular replacement therapy has emerged as a novel strategy for the treatment of heart failure. The aim of our study was to determine the fate of injected mesenchymal stem cells (MSCs) and whole bone marrow (BM) cells in the infarcted heart. MSCs were purified from BM of transgenic mice and characterized using flow cytometry and in vitro differentiation assays. Myocardial infarctions were generated in mice and different cell populations including transgenic MSCs, unfractionated BM cells, or purified hematopoietic progenitors were injected. Encapsulated structures were found in the infarcted areas of a large fraction of hearts after injecting MSCs (22 of 43, 51.2%) and unfractionated BM cells (6 of 46, 13.0%). These formations contained calcifications and/or ossifications. In contrast, no pathological abnormalities were found after injection of purified hematopoietic progenitors (0 of 5, 0.0%), fibroblasts (0 of 5, 0.0%), vehicle only (0 of 30, 0.0%), or cytokine-induced mobilization of BM cells (0 of 35, 0.0%). We conclude that the developmental fate of BM-derived cells is not restricted by the surrounding tissue after myocardial infarction and that the MSC fraction underlies the extended bone formation in the infarcted myocardium. These findings seriously question the biologic basis and clinical safety of using whole BM and in particular MSCs to treat nonhematopoietic disorders.
  •  
3.
  • Buitenhuis, Miranda, et al. (författare)
  • Protein kinase B (c-akt) regulates hematopoietic lineage choice decisions during myelopoiesis
  • 2008
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 111:1, s. 112-121
  • Tidskriftsartikel (refereegranskat)abstract
    • Hematopoiesis is a highly regulated process resulting in the formation of all blood lineages. Aberrant regulation of phosphatidylinositol-3-kinase (PI3K) signaling has been observed in hematopoietic malignancies, suggesting that regulated PI3K signaling is critical for regulation of blood cell production. An ex vivo differentiation system was used to investigate the role of PI3K and its downstream effector, protein kinase B (PKB/c-akt) in myelopoiesis. PI3K activity was essential for hematopoietic progenitor survival. High PKB activity was found to promote neutrophil and monocyte development, while, conversely, reduction of PKB activity was required to induce optimal eosinophil differentiation. In addition, transplantation of beta2-microglobulin (-/-) NOD/SCID mice with CD34(+) cells ectopically expressing constitutively active PKB resulted in enhanced neutrophil and monocyte development, whereas ectopic expression of dominant-negative PKB induced eosinophil development in vivo. Inhibitory phosphorylation of C/EBPalpha on Thr222/226 was abrogated upon PKB activation in hematopoietic progenitors. Ectopic expression of a nonphosphorylatable C/EBPalpha mutant inhibited eosinophil differentiation ex vivo, whereas neutrophil development was induced, demonstrating the importance of PKB-mediated C/EBPalpha phosphorylation in regulation of granulopoiesis. These results identify an important novel role for PKB in regulation of cell fate choices during hematopoietic lineage commitment.
  •  
4.
  • Kolossov, Eugen, et al. (författare)
  • Engraftment of engineered ES cell-derived cardiomyocytes but not BM cells restores contractile function to the infarcted myocardium
  • 2006
  • Ingår i: Journal of Experimental Medicine. - New York, USA : Rockefeller University Press. - 0022-1007 .- 1540-9538. ; 203:10, s. 2315-2327
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellular cardiomyoplasty is an attractive option for the treatment of severe heart failure. It is, however, still unclear and controversial which is the most promising cell source. Therefore, we investigated and examined the fate and functional impact of bone marrow (BM) cells and embryonic stem cell (ES cell)-derived cardiomyocytes after transplantation into the infarcted mouse heart. This proved particularly challenging for the ES cells, as their enrichment into cardiomyocytes and their long-term engraftment and tumorigenicity are still poorly understood. We generated transgenic ES cells expressing puromycin resistance and enhanced green fluorescent protein cassettes under control of a cardiac-specific promoter. Puromycin selection resulted in a highly purified (>99%) cardiomyocyte population, and the yield of cardiomyocytes increased 6-10-fold because of induction of proliferation on purification. Long-term engraftment (4-5 months) was observed when co-transplanting selected ES cell-derived cardiomyocytes and fibroblasts into the injured heart of syngeneic mice, and no teratoma formation was found (n = 60). Although transplantation of ES cell-derived cardiomyocytes improved heart function, BM cells had no positive effects. Furthermore, no contribution of BM cells to cardiac, endothelial, or smooth muscle neogenesis was detected. Hence, our results demonstrate that ES-based cell therapy is a promising approach for the treatment of impaired myocardial function and provides better results than BM-derived cells.
  •  
5.
  • Ramsfjell, Veslemoy, et al. (författare)
  • Distinct requirements for optimal growth and In vitro expansion of human CD34(+)CD38(-) bone marrow long-term culture-initiating cells (LTC-IC), extended LTC-IC, and murine in vivo long-term reconstituting stem cells
  • 1999
  • Ingår i: Blood. - 1528-0020. ; 94:12, s. 4093-4102
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, primitive human bone marrow (BM) progenitors supporting hematopoiesis in extended (>60 days) long-term BM cultures were identified. Such extended long-term culture-initiating cells (ELTC-IC) are of the CD34(+)CD38(-) phenotype, are quiescent, and are difficult to recruit into proliferation, implicating ELTC-IC as the most primitive human progenitor cells detectable in vitro. However, it remains to be established whether ELTC-IC can proliferate and potentially expand in response to early acting cytokines. Here, CD34(+)CD38(-) BM ELTC-IC (12-week) were efficiently recruited into proliferation and expanded in vitro in response to early acting cytokines, but conditions for expansion of ELTC-IC activity were distinct from those of traditional (5-week) LTC-IC and murine long-term repopulating cells. Whereas c-kit ligand (KL), interleukin-3 (IL-3), and IL-6 promoted proliferation and maintenance or expansion of murine long-term reconstituting activity and human LTC-IC, they dramatically depleted ELTC-IC activity. In contrast, KL, flt3 ligand (FL), and megakaryocyte growth and development factor (MGDF) (and KL + FL + IL-3) expanded murine long-term reconstituting activity as well as human LTC-IC and ELTC-IC. Expansion of LTC-IC was most optimal after 7 days of culture, whereas optimal expansion of ELTC-IC activity required 12 days, most likely reflecting the delayed recruitment of quiescent CD34(+)CD38(-) progenitors. The need for high concentrations of KL, FL, and MGDF (250 ng/mL each) and serum-free conditions was more critical for expansion of ELTC-IC than of LTC-IC. The distinct requirements for expansion of ELTC-IC activity when compared with traditional LTC-IC suggest that the ELTC-IC could prove more reliable as a predictor for true human stem cell activity after in vitro stem cell manipulation.
  •  
6.
  • Woll, Petter S, et al. (författare)
  • Myelodysplastic Syndromes Are Propagated by Rare and Distinct Human Cancer Stem Cells In Vivo.
  • 2014
  • Ingår i: Cancer Cell. - : Elsevier BV. - 1878-3686 .- 1535-6108. ; 25:6, s. 794-808
  • Tidskriftsartikel (refereegranskat)abstract
    • Evidence for distinct human cancer stem cells (CSCs) remains contentious and the degree to which different cancer cells contribute to propagating malignancies in patients remains unexplored. In low- to intermediate-risk myelodysplastic syndromes (MDS), we establish the existence of rare multipotent MDS stem cells (MDS-SCs), and their hierarchical relationship to lineage-restricted MDS progenitors. All identified somatically acquired genetic lesions were backtracked to distinct MDS-SCs, establishing their distinct MDS-propagating function in vivo. In isolated del(5q)-MDS, acquisition of del(5q) preceded diverse recurrent driver mutations. Sequential analysis in del(5q)-MDS revealed genetic evolution in MDS-SCs and MDS-progenitors prior to leukemic transformation. These findings provide definitive evidence for rare human MDS-SCs in vivo, with extensive implications for the targeting of the cells required and sufficient for MDS-propagation.
  •  
7.
  • Adolfsson, Jörgen, et al. (författare)
  • Identification of Flt3(+) lympho-myeloid stem cells lacking erythro-megakaryocytic potential: A revised road map for adult blood lineage commitment
  • 2005
  • Ingår i: Cell. - : Elsevier (Cell Press). - 0092-8674 .- 1097-4172. ; 121:2, s. 295-306
  • Tidskriftsartikel (refereegranskat)abstract
    • All blood cell lineages derive from a common hematopoietic stem cell (HSC). The current model implicates that the first lineage commitment step of adult pluripotent HSCs results in a strict separation into common lymphoid and common myeloid precursors. We present evidence for a population of cells which, although sustaining a high proliferative and combined lympho-myeloid differentiation potential, have lost the ability to adopt erythroid and megakaryocyte lineage fates. Cells in the Lin-Sca-1+c-kit+ HSC compartment coexpressing high levels of the tyrosine kinase receptor Flt3 sustain granulocyte, monocyte, and B and T cell potentials but in contrast to Lin-Sca-1(+)ckit(+)Flt3(-) HSCs fail to produce significant erythroid and megakaryocytic progeny. This distinct lineage restriction site is accompanied by downregulation of genes for regulators of erythroid and megakaryocyte development. In agreement with representing a lymphoid primed progenitor, Lin(-)Sca-l(+)c-kit(+)CD34(+)Flt3(+) cells display upregulated IL-7 receptor gene expression. Based on these observations, we propose a revised road map for adult blood lineage development.
  •  
8.
  • Adolfsson, Jörgen, et al. (författare)
  • Upregulation of Flt3 expression within the bone marrow Lin(-)Sca1(+)c-kit(+) stem cell compartment is accompanied by loss of self-renewal capacity
  • 2001
  • Ingår i: Immunity. - 1074-7613. ; 15:4, s. 659-669
  • Tidskriftsartikel (refereegranskat)abstract
    • Flt3 has emerged as a potential regulator of hematopoietic stem cells (HSC). Sixty percent of cells in the mouse marrow Lin(-)Sca1(+)c-kit(+) HSC pool expressed flt3. Although single cell cloning showed comparable high proliferative, myeloid, B, and T cell potentials of Lin(-)Sca1(+)c-kit(+)flt3(+) and Lin(-)Sca1(+)c-kit(+)flt3(-) cells, only Lin(-)Sca1(+)c-kit(+)flt3(-) cells supported sustained multilineage reconstitution. In striking contrast, Lin(-)Sca1(+)c-kit(+)flt3(+) cells rapidly and efficiently reconstituted B and T lymphopoiesis, whereas myeloid reconstitution was exclusively short term. Unlike c-kit, activation of flt3 failed to support survival of HSC, whereas only flt3 mediated survival of Lin(-)Sca1(+)c-kit(+)flt3(+) reconstituting cells. Phenotypic and functional analysis support that Lin(-)Sca1(+)c-kit(+)flt3(+) cells are progenitors for the common lymphoid progenitor. Thus, upregulation of flt3 expression on Lin(-)Sca1(+)c-kit(+) HSC cells is accompanied by loss of self-renewal capacity but sustained lymphoid-restricted reconstitution potential.
  •  
9.
  • Ahlenius, Henrik, et al. (författare)
  • Adaptor Protein LNK Is a Negative Regulator of Brain Neural Stem Cell Proliferation after Stroke.
  • 2012
  • Ingår i: The Journal of Neuroscience : the official journal of the Society for Neuroscience. - 1529-2401. ; 32:15, s. 5151-5164
  • Tidskriftsartikel (refereegranskat)abstract
    • Ischemic stroke causes transient increase of neural stem and progenitor cell (NSPC) proliferation in the subventricular zone (SVZ), and migration of newly formed neuroblasts toward the damaged area where they mature to striatal neurons. The molecular mechanisms regulating this plastic response, probably involved in structural reorganization and functional recovery, are poorly understood. The adaptor protein LNK suppresses hematopoietic stem cell self-renewal, but its presence and role in the brain are poorly understood. Here we demonstrate that LNK is expressed in NSPCs in the adult mouse and human SVZ. Lnk(-/-) mice exhibited increased NSPC proliferation after stroke, but not in intact brain or following status epilepticus. Deletion of Lnk caused increased NSPC proliferation while overexpression decreased mitotic activity of these cells in vitro. We found that Lnk expression after stroke increased in SVZ through the transcription factors STAT1/3. LNK attenuated insulin-like growth factor 1 signaling by inhibition of AKT phosphorylation, resulting in reduced NSPC proliferation. Our findings identify LNK as a stroke-specific, endogenous negative regulator of NSPC proliferation, and suggest that LNK signaling is a novel mechanism influencing plastic responses in postischemic brain.
  •  
10.
  • Anderson, Kristina, et al. (författare)
  • Ectopic expression of PAX5 promotes maintenance of biphenotypic myeloid progenitors coexpressing myeloid and B-cell lineage-associated genes
  • 2007
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 109:9, s. 3697-3705
  • Tidskriftsartikel (refereegranskat)abstract
    • The transcription factor PAX5 is a critical regulator of B-cell commitment and development. Although normally not expressed in myeloid progenitors, PAX5 has recently been shown to be frequently expressed in myeloid malignancies and to suppress expression of myeloid differentiation genes, compatible with an effect on the differentiation or maintenance of myeloid progenitors. However, previous studies in which PAX5 was ectopically expressed in normal myeloid progenitors in vivo and in vitro provided conflicting results as to the effect of PAX5 on myeloid development. Herein, we demonstrate that on ectopic expression of PAX5 in bone marrow multipotent stem/progenitor cells, cells with a biphenotypic B220+GR-1/MAC-1+ phenotype are produced. These remain cytokine-dependent, but unlike control-transduced cells they sustain long-term generation of myeloid progenitors in vitro and remain capable of myeloid differentiation. Notably, PAX5+B220+GR-1/MAC- 1+ myeloid progenitors coexpress, at the single-cell level, myeloid genes and otherwise B-cell-specific PAX5 target genes. These findings establish that ectopic expression of PAX5 introduces extensive self-renewal properties in otherwise short-lived myeloid progenitors. Along with the established ectopic expression of PAX5 in acute myeloid leukemia, this motivates a careful investigation of the potential involvement of ectopic PAX5 expression in myeloid and biphenotypic leukemias. © 2007 by The American Society of Hematology.
  •  
11.
  • Anderson, Kristina, et al. (författare)
  • Ectopic expression of PAX5 promotes self renewal of bi-phenotypic myeloid progenitors co-expressing myeloid and B-cell lineage associated genes.
  • 2007
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 109:Jan 11, s. 3697-3705
  • Tidskriftsartikel (refereegranskat)abstract
    • The transcription factor PAX5 is a critical regulator of B-cell commitment and development. Although normally not expressed in myeloid progenitors, PAX5 has recently been shown to be frequently expressed in myeloid malignancies and to suppress expression of myeloid differentiation genes, compatible with an effect on the differentiation or maintenance of myeloid progenitors. However, previous studies in which PAX5 was ectopically expressed in normal myeloid progenitors in vivo and in vitro provided conflicting results as to the effect of PAX5 on myeloid development. Herein, we demonstrate that on ectopic expression of PAX5 in bone marrow multipotent stem/progenitor cells, cells with a biphenotypic B220+GR-1/MAC-1+ phenotype are produced. These remain cytokine-dependent, but unlike control-transduced cells they sustain long-term generation of myeloid progenitors in vitro and remain capable of myeloid differentiation. Notably, PAX5+B220+GR-1/MAC-1+ myeloid progenitors coexpress, at the single-cell level, myeloid genes and otherwise B-cell–specific PAX5 target genes. These findings establish that ectopic expression of PAX5 introduces extensive self-renewal properties in otherwise short-lived myeloid progenitors. Along with the established ectopic expression of PAX5 in acute myeloid leukemia, this motivates a careful investigation of the potential involvement of ectopic PAX5 expression in myeloid and biphenotypic leukemias.
  •  
12.
  • Azzoni, Emanuele, et al. (författare)
  • The onset of circulation triggers a metabolic switch required for endothelial to hematopoietic transition
  • 2021
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 37:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Hematopoietic stem cells (HSCs) emerge during development from the vascular wall of the main embryonic arteries. The onset of circulation triggers several processes that provide critical external factors for HSC generation. Nevertheless, it is not fully understood how and when the onset of circulation affects HSC emergence. Here we show that in Ncx1−/− mouse embryos devoid of circulation the HSC lineage develops until the phenotypic pro-HSC stage. However, these cells reside in an abnormal microenvironment, fail to activate the hematopoietic program downstream of Runx1, and are functionally impaired. Single-cell transcriptomics shows that during the endothelial-to-hematopoietic transition, Ncx1−/− cells fail to undergo a glycolysis to oxidative phosphorylation metabolic switch present in wild-type cells. Interestingly, experimental activation of glycolysis results in decreased intraembryonic hematopoiesis. Our results suggest that the onset of circulation triggers metabolic changes that allow HSC generation to proceed.
  •  
13.
  • Bardini, M, et al. (författare)
  • Clonal variegation and dynamic competition of leukemia-initiating cells in infant acute lymphoblastic leukemia with MLL rearrangement.
  • 2015
  • Ingår i: Leukemia. - : Springer Science and Business Media LLC. - 1476-5551 .- 0887-6924. ; 29:1, s. 38-50
  • Tidskriftsartikel (refereegranskat)abstract
    • Distinct from most other acute lymphoblastic leukemia (ALL), infant ALL with mixed lineage leukemia (MLL) gene rearrangement, the most common leukemia occurring within the first year of life, might arise without the need for cooperating genetic lesions. Through Ig/TCR rearrangement analysis of MLL-AF4+ infant ALL at diagnosis and xenograft leukemias from mice transplanted with the same diagnostic samples, we established that MLL-AF4+ infant ALL is composed of a branching subclonal architecture already at diagnosis, frequently driven by a Ig/TCR-rearranged founder clone. Some MLL-AF4+ clones appear to be largely quiescent at diagnosis but can reactivate and dominate when serially transplanted into immune-deficient mice, whereas other dominant clones at diagnosis can become more quiescent, suggesting a dynamic competition between actively proliferating and quiescent subclones. Investigation of paired diagnostic and relapse samples suggested that relapses often occur from subclones already present but more quiescent at diagnosis. Copy number alterations identified at relapse might contribute to the activation and expansion of previously quiescent subclones. Finally, each of the identified subclones is able to contribute to the diverse phenotypic pool of MLL-AF4+ leukemia-propagating cells. Unraveling of the subclonal architecture and dynamics in MLL+ infant ALL may provide possible explanations for the therapy resistance and frequent relapses observed in this group of poor prognosis ALL.Leukemia accepted article preview online, 06 May 2014; doi:10.1038/leu.2014.154.
  •  
14.
  •  
15.
  •  
16.
  • Bereshchenko, Oxana, et al. (författare)
  • Hematopoietic Stem Cell Expansion Precedes the Generation of Committed Myeloid Leukemia-initiating Cells in C/EBP alpha Mutant AML
  • 2009
  • Ingår i: Cancer Cell. - : Elsevier BV. - 1878-3686 .- 1535-6108. ; 16:5, s. 390-400
  • Tidskriftsartikel (refereegranskat)abstract
    • We here use knockin mutagenesis in the mouse to model the spectrum of acquired CEBPA mutations in human acute myeloid leukemia. We find that C-terminal C/EBP alpha mutations increase the proliferation of long-term hematopoietic stem cells (LT-HSCs) in a cell-intrinsic manner and override normal HSC homeostasis, leading to expansion of premalignant HSCs. However, such mutations impair myeloid programming of HSCs and block myeloid lineage commitment when homozygous. In contrast, N-terminal C/EBP alpha mutations are silent with regards to HSC expansion, but allow the formation of committed myeloid progenitors, the templates for leukemia-initiating cells. The combination of N- and C-terminal C/EBP alpha mutations incorporates both features, accelerating disease development and explaining the clinical prevalence of this configuration of CEBPA mutations.
  •  
17.
  • Björgvinsdottir, Helga, et al. (författare)
  • Efficient Oncoretroviral Transduction of Extended Long-Term Culture-Initiating Cells and NOD/SCID Repopulating Cells: Enhanced Reconstitution with Gene-Marked Cells Through an Ex Vivo Expansion Approach.
  • 2002
  • Ingår i: Human Gene Therapy. - 1043-0342. ; 13:9, s. 1061-1073
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent developments of surrogate assays for human hematopoietic stem cells (HSC) have facilitated efforts at improving HSC gene transfer efficiency. Through the use of xenograft transplantation models, such as nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice, successful oncoretroviral gene transfer to transplantable hematopoietic cells has been achieved. However, because of the low frequency and/or homing efficiency of SCID repopulating cells (SRC) in bone marrow (BM), studies have primarily focused on cord blood (CB). The recently developed extended (> 60 days) long-term culture-initiating cell (ELTC-IC) assay detects an infrequent and highly quiescent candidate stem cell population in BM as well as CB of the CD34(+)CD38(-) phenotype. Although these characteristics suggest that ELTC-IC and SRC might be closely related, attempts to oncoretrovirally transduce ELTC-IC have been unsuccessful. Here, recently developed conditions (high concentrations of SCF + FL + Tpo in serum-free medium) supporting expansion of BM CD34(+)CD38(-) 12 week ELTC-IC promoted efficient oncoretroviral transduction of BM and CB ELTC-IC. Although SRC can be transduced with oncoretroviral vectors, this is frequently associated with loss of reconstituting activity, posing a problem for development of clinical HSC gene therapy. However, previous attempts at expanding transduced HSC posttransduction resulted in compromised rather than improved gene marking. Utilizing conditions promoting cell divisions and transduction of ELTC-IC we show that although 5 days of ex vivo culture is sufficient to obtain maximum gene transfer efficiency to SRC, extension of the expansion period to 12 days significantly enhances multilineage reconstitution activity of transduced SRC, supporting the feasibility of improving gene marking through ex vivo expansion.
  •  
18.
  • Broeske, Ann-Marie, et al. (författare)
  • DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction
  • 2009
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 41:11, s. 69-1207
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA methylation is a dynamic epigenetic mark that undergoes extensive changes during differentiation of self-renewing stem cells. However, whether these changes are the cause or consequence of stem cell fate remains unknown. Here, we show that alternative functional programs of hematopoietic stem cells (HSCs) are governed by gradual differences in methylation levels. Constitutive methylation is essential for HSC self-renewal but dispensable for homing, cell cycle control and suppression of apoptosis. Notably, HSCs from mice with reduced DNA methyltransferase 1 activity cannot suppress key myeloerythroid regulators and thus can differentiate into myeloerythroid, but not lymphoid, progeny. A similar methylation dosage effect controls stem cell function in leukemia. These data identify DNA methylation as an essential epigenetic mechanism to protect stem cells from premature activation of predominant differentiation programs and suggest that methylation dynamics determine stem cell functions in tissue homeostasis and cancer.
  •  
19.
  •  
20.
  • Bryder, David, et al. (författare)
  • Deficiency of oncoretrovirally transduced hematopoietic stem cells and correction through ex vivo expansion.
  • 2005
  • Ingår i: Journal of Gene Medicine. - : Wiley. - 1521-2254 .- 1099-498X. ; 7:2, s. 137-144
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Extensive efforts to develop hematopoietic stem cell (HSC) based gene therapy have been hampered by low gene marking. Major emphasis has so far been directed at improving gene transfer efficiency, but low gene marking in transplanted recipients might equally well reflect compromised repopulating activity of transduced cells, competing for reconstitution with endogenous and unmanipulated stem cells. Methods The autologous settings of clinical gene therapy protocols preclude evaluation of changes in repopulating ability following transduction; however, using a congenic mouse model, allowing for direct evaluation of gene marking of lympho-myeloid progeny, we show here that these issues can be accurately addressed. Results We demonstrate that conditions supporting in vitro stem cell self-renewal efficiently promote oncoretroviral-mediated gene transfer to multipotent adult bone marrow stem cells, without prior in vivo conditioning. Despite using optimized culture conditions, transduction resulted in striking losses of repopulating activity, translating into low numbers of gene marked cells in competitively repopulated mice. Subjecting transduced HSCs to an ex vivo expansion protocol following the transduction procedure could partially reverse this loss. Conclusions These studies suggest that loss of repopulating ability of transduced HSCs rather than low gene transfer efficiency might be the main problem in clinical gene therapy protocols, and that a clinically feasible ex vivo expansion approach post-transduction can markedly improve reconstitution with gene marked stem cells.
  •  
21.
  • Bryder, David, et al. (författare)
  • Interleukin-3 supports expansion of long-term multilineage repopulating activity after multiple stem cell divisions in vitro
  • 2000
  • Ingår i: Blood. - 1528-0020. ; 96:5, s. 1748-1755
  • Tidskriftsartikel (refereegranskat)abstract
    • Although long-term repopulating hematopoietic stem cells (HSC) can self-renew and expand extensively in vivo, most efforts at expanding HSC in vitro have proved unsuccessful and have frequently resulted in compromised rather than improved HSC grafts. This has triggered the search for the optimal combination of cytokines for HSC expansion. Through such studies, c-kit ligand (KL), flt3 ligand (FL), thrombopoietin, and IL-11 have emerged as likely positive regulators of HSC self-renewal. In contrast, numerous studies have implicated a unique and potent negative regulatory role of IL-3, suggesting perhaps distinct regulation of HSC fate by different cytokines. However, the interpretations of these findings are complicated by the fact that different cytokines might target distinct subpopulations within the HSC compartment and by the lack of evidence for HSC undergoing self-renewal. Here, in the presence of KL+FL+megakaryocyte growth and development factor (MGDF), which recruits virtually all Lin(-)Sca-1(+)kit(+) bone marrow cells into proliferation and promotes their self-renewal under serum-free conditions, IL-3 and IL-11 revealed an indistinguishable ability to further enhance proliferation. Surprisingly, and similar to IL-11, IL-3 supported KL+FL+MGDF-induced expansion of multilineage, long-term reconstituting activity in primary and secondary recipients. Furthermore, high-resolution cell division tracking demonstrated that all HSC underwent a minimum of 5 cell divisions, suggesting that long-term repopulating HSC are not compromised by IL-3 stimulation after multiple cell divisions. In striking contrast, the ex vivo expansion of murine HSC in fetal calf serum-containing medium resulted in extensive loss of reconstituting activity, an effect further facilitated by the presence of IL-3. (Blood. 2000;96:1748-1755)
  •  
22.
  • Bryder, David, et al. (författare)
  • Self-renewal of multipotent long-term repopulating hematopoietic stem cells is negatively regulated by Fas and tumor necrosis factor receptor activation
  • 2001
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 194:7, s. 941-952
  • Tidskriftsartikel (refereegranskat)abstract
    • Multipotent self-renewing hematopoietic stem cells (HSCs) are responsible for reconstitution of all blood cell lineages. Whereas growth stimulatory cytokines have been demonstrated to promote HSC self-renewal, the potential role of negative regulators remains elusive. Receptors for tumor necrosis factor (TNF) and Fas ligand have been implicated as regulators of steady-state hematopoiesis, and if overexpressed mediate bone marrow failure. However, it has been proposed that hematopoietic progenitors rather than stem cells might be targeted by Fas activation. Here, murine Lin(-)Sca1(+)c-kit(+) stem cells revealed little or no constitutive expression of Fas and failed to respond to an agonistic anti-Fas antibody. However, if induced to undergo self-renewal in the presence of TNF-alpha, the entire short and long-term repopulating HSC pool acquired Fas expression at high levels and concomitant activation of Fas suppressed in vitro growth of Lin(-)Sca1(+)c-kit(+) cells cultured at the single cell level. Moreover, Lin(-)Sca1(+)c-kit(+) stem cells undergoing self-renewal divisions in vitro were severely and irreversibly compromised in their short- and long-term multilineage reconstituting ability if activated by TNF-alpha or through Fas, providing the first evidence for negative regulators of HSC self-renewal.
  •  
23.
  • Buza-Vidas, Natalija, et al. (författare)
  • Crucial role of FLT3 ligand in immune reconstitution following bone marrow transplantation and high dose chemotherapy.
  • 2007
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 110:1, s. 424-432
  • Tidskriftsartikel (refereegranskat)abstract
    • Almost 5 decades after the first clinical transplantations, delayed immune reconstitution remains a considerable hurdle in bone marrow transplantation, and the mechanisms regulating immune reconstitution after transplantation remain to be established. Whereas adult fms-like tyrosine kinase 3 ligand-deficient (FL-/-) mice have reduced numbers of early Band T-cell progenitors, they sustain close to normal levels of mature B and T cells. Herein, we demonstrate that adult bone marrow cells fail to reconstitute B-cell progenitors and conventional B cells in lethally irradiated FL-/- recipients, which also display delayed kinetics of T-cell reconstitution. Similarly, FL is essential for B-cell regeneration after chemotherapy-induced myeloablation. In contrast, fetal progenitors reconstitute B lymphopoiesis in FL-/- mice, albeit at reduced levels. A critical role of FL in adult B lymphopoiesis is further substantiated by an age-progressive decline in peripheral conventional B cells in FL-/- mice, whereas fetally and early postnatally derived B1 and marginal zone B cells are sustained in a FL-independent manner. Thus, FL plays a crucial role in sustaining conventional B lymphopoiesis in adult mice and, as a consequence, our findings implicate a critical role of FL in promoting immune reconstitution after myeloablation and bone marrow transplantation.
  •  
24.
  • Buza-Vidas, Natalija, et al. (författare)
  • Cytokines regulate postnatal hematopoietic stem cell expansion : Opposing roles of thrombopoietin and LNK
  • 2006
  • Ingår i: Genes & Development. - Woodbury, NY, USA : Cold Spring Harbor Laboratory Press (CSHL). - 0890-9369 .- 1549-5477. ; 20:15, s. 2018-2023
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of cytokines as regulators of hematopoietic stem cell (HSC) expansion remains elusive. Herein, we identify thrombopoietin (THPO) and the cytokine signaling inhibitor LNK, as opposing physiological regulators of HSC expansion. Lnk(-/-) HSCs continue to expand postnatally, up to 24-fold above normal by 6 mo of age. Within the stem cell compartment, this expansion is highly selective for self-renewing long-term HSCs (LT-HSCs), which show enhanced THPO responsiveness. Lnk(-/-) HSC expansion is dependent on THPO, and 12-wk-old Lnk(-/-)Thpo(-/-) mice have 65-fold fewer LT-HSCs than Lnk(-/-) mice. Expansions of multiple myeloid, but not lymphoid, progenitors in Lnk(-/-) mice also proved THPO-dependent.
  •  
25.
  • Buza-Vidas, Natalija, et al. (författare)
  • Delineation of the earliest lineage commitment steps of haematopoietic stem cells: new developments, controversies and major challenges
  • 2007
  • Ingår i: Current Opinion in Hematology. - 1531-7048. ; 14:4, s. 315-321
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose of review This review addresses recently reported evidence for alternative cellular pathways for haematopoietic stem cell lineage commitment. Recent findings Using various approaches, several laboratories suggested the existence of adult as well as foetal multipotent progenitor cells with combined B cell, T cell and granulocyte/macrophage potential, but little or no megakaryocyte/erythroid potential. Compared with haematopoietic stem cells, these multipotent progenitor cells exhibited downregulated transcriptional expression of genes of the megakaryocyte/erythroid lineages and upregulated expression of lymphoid lineage genes. The existence of these lineage-restricted multipotent progenitor cells suggests that the first lineage commitment step of haematopoietic stem cells does not result in strict separation into myelopoiesis and lymphopoiesis, and that there might be alternative pathways for commitment toward different lineage fates. These findings have been questioned by other studies, however. To resolve this controversy and establish the complete road map for haematopoietic lineage commitment, improved tools and more stringent standards for how to identify and characterize lineage fate options of distinct stem and progenitor cells are needed. Summary Current and future progress in establishing the complete cellular roadmap for haematopoietic lineage commitment will permit identification and characterization of key regulators of lineage fate decisions in haematopoietic stem cells.
  •  
26.
  • Buza-Vidas, Natalija, et al. (författare)
  • FLT3 expression initiates in fully multipotent mouse hematopoietic progenitor cells
  • 2011
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 118:6, s. 1544-1548
  • Tidskriftsartikel (refereegranskat)abstract
    • Lymphoid-primed multipotent progenitors with down-regulated megakaryocyte-erythroid (MkE) potential are restricted to cells with high levels of cell-surface FLT3 expression, whereas HSCs and MkE progenitors lack detectable cell-surface FLT3. These findings are compatible with FLT3 cell-surface expression not being detectable in the fully multipotent stem/progenitor cell compartment in mice. If so, this process could be distinct from human hematopoiesis, in which FLT3 already is expressed in multipotent stem/progenitor cells. The expression pattern of Flt3 (mRNA) and FLT3 (protein) in multipotent progenitors is of considerable relevance for mouse models in which prognostically important Flt3 mutations are expressed under control of the endogenous mouse Flt3 promoter. Herein, we demonstrate that mouse Flt3 expression initiates in fully multipotent progenitors because in addition to lymphoid and granulocyte-monocyte progenitors, FLT3(-) Mk- and E-restricted downstream progenitors are also highly labeled when Flt3-Cre fate mapping is applied. (Blood. 2011;118(6):1544-1548)
  •  
27.
  • Buza-Vidas, Natalija, et al. (författare)
  • FLT3 receptor and ligand are dispensable for maintenance and posttransplantation expansion of mouse hematopoietic stem cells
  • 2009
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 113:15, s. 3453-3460
  • Tidskriftsartikel (refereegranskat)abstract
    • Originally cloned from hematopoietic stem cell (HSC) populations and its ligand being extensively used to promote ex vivo HSC expansion, the FMS-like tyrosine kinase 3 (FLT3; also called FLK2) receptor and its ligand (FL) were expected to emerge as an important physiologic regulator of HSC maintenance and expansion. However, the role of FLT3 receptor and ligand in HSC regulation remains unclear and disputed. Herein, using Fl-deficient mice, we establish for the first time that HSC expansion in fetal liver and after transplantation is FL independent. Because previous findings in Flk2(-/-) mice were compatible with an important role of FLT3 receptor in HSC regulation and because alternative ligands might potentially interact directly or indirectly with FLT3 receptor, we here also characterized HSCs in Flk2(-/-) mice. Advanced phenotypic as well as functional evaluation of Flk2(-/-) HSCs showed that the FLT3 receptor is dispensable for HSC steady-state maintenance and expansion after transplantation. Taken together, these studies show that the FLT3 receptor and ligand are not critical regulators of mouse HSCs, neither in steady state nor during fetal or posttransplantation expansion. (Blood. 2009; 113: 3453-3460)
  •  
28.
  • Böiers, Charlotta, et al. (författare)
  • Expression and role of FLT3 in regulation of the earliest stage of normal granulocyte-monocyte progenitor development.
  • 2010
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; May 4, s. 5061-5068
  • Tidskriftsartikel (refereegranskat)abstract
    • Mice deficient in FLT3 signalling have reductions in early multipotent and lymphoid progenitors, whereas no evident myeloid phenotype has been reported. However, activating mutations of Flt3 are among the most common genetic events in acute myeloid leukemia and mice harbouring internal tandem duplications within Flt3 (Flt3-ITD) develop myeloproliferative disease, with characteristic expansion of granulocyte-monocyte (GM) progenitors, possibly compatible with FLT3-ITD promoting a myeloid fate of multipotent progenitors. Alternatively, FLT3 might be expressed at the earliest stages of GM development. Herein, we investigated the expression, function and role of FLT3 in recently identified early GM progenitors. Flt3-cre fate mapping established that most progenitors and mature progeny of the GM lineage are derived from Flt3 expressing progenitors. A higher expression of FLT3 was found in preGMP compared to GMP, and preGMPs were more responsive to stimulation with FLT3 ligand (FL). Whereas preGMPs and GMPs were reduced in Fl(-/-) mice, megakaryocyte-erythroid progenitors were unaffected and lacked FLT3 expression. Notably, mice deficient in both Thrombopoietin (THPO) and FL, had a more pronounced GM progenitor phenotype than Thpo(-/-) mice, establishing a role of FL in THPO-dependent and independent regulation of GM progenitors, of likely significance for myeloid malignancies with Flt3-ITD mutations.
  •  
29.
  • Böiers, Charlotta, et al. (författare)
  • Lymphomyeloid Contribution of an Immune-Restricted Progenitor Emerging Prior to Definitive Hematopoietic Stem Cells.
  • 2013
  • Ingår i: Cell Stem Cell. - : Elsevier BV. - 1934-5909 .- 1875-9777. ; 13:5, s. 535-548
  • Tidskriftsartikel (refereegranskat)abstract
    • In jawed vertebrates, development of an adaptive immune-system is essential for protection of the born organism against otherwise life-threatening pathogens. Myeloid cells of the innate immune system are formed early in development, whereas lymphopoiesis has been suggested to initiate much later, following emergence of definitive hematopoietic stem cells (HSCs). Herein, we demonstrate that the embryonic lymphoid commitment process initiates earlier than previously appreciated, prior to emergence of definitive HSCs, through establishment of a previously unrecognized entirely immune-restricted and lymphoid-primed progenitor. Notably, this immune-restricted progenitor appears to first emerge in the yolk sac and contributes physiologically to the establishment of lymphoid and some myeloid components of the immune-system, establishing the lymphomyeloid lineage restriction process as an early and physiologically important lineage-commitment step in mammalian hematopoiesis.
  •  
30.
  • Castor, Anders, et al. (författare)
  • Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia
  • 2005
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 11:6, s. 630-637
  • Tidskriftsartikel (refereegranskat)abstract
    • The cellular targets of primary mutations and malignant transformation remain elusive in most cancers. Here, we show that clinically and genetically different subtypes of acute lymphoblastic leukemia (ALL) originate and transform at distinct stages of hematopoietic development. Primary ETV6-RUNX1 (also known as TEL-AML1) fusions and subsequent leukemic transformations were targeted to committed B-cell progenitors. Major breakpoint BCR-ABL1 fusions (encoding P210 BCR-ABL1) originated in hematopoietic stem cells (HSCs), whereas minor BCR-ABL1 fusions (encoding P190 BCR-ABL1) had a B-cell progenitor origin, suggesting that P190 and P210 BCR-ABL1 ALLs represent largely distinct tumor biological and clinical entities. The transformed leukemia-initiating stem cells in both P190 and P210 BCR-ABL1 ALLs had, as in ETV6-RUNX1 ALLs, a committed B progenitor phenotype. In all patients, normal and leukemic repopulating stem cells could successfully be separated prospectively, and notably, the size of the normal HSC compartment in ETV6-RUNX1 and P190 BCR-ABL1 ALLs was found to be unaffected by the expansive leukemic stem cell population.
  •  
31.
  •  
32.
  • Cheng, Min, et al. (författare)
  • Distinct and overlapping patterns of cytokine regulation of thymic and bone marrow-derived NK cell development.
  • 2009
  • Ingår i: Journal of immunology. - : The American Association of Immunologists. - 1550-6606 .- 0022-1767. ; 182:3, s. 1460-1468
  • Tidskriftsartikel (refereegranskat)abstract
    • Although bone marrow (BM) represents the main site for postnatal NK cell development, recently a distinct thymic-dependent NK cell pathway was identified. These studies were designed to investigate the role of cytokines in regulation of thymic NK cells and to compare with established regulatory pathways of BM-dependent NK cell compartment. The common cytokine receptor gamma-chain (Il2rg) essential for IL-15-induced signaling, and FMS-like tyrosine kinase 3 (FLT3) receptor ligand (Flt3l) were previously identified as important regulatory pathways of the BM NK cell compartment based on lack of function studies in mice, however their complementary action remains unknown. By investigating mice double-deficient in Il2rg and Flt3l (Flt3l(-/-) Il2rg(-/-)), we demonstrate that FLT3L is important for IL2Rg-independent maintenance of both immature BM as well as peripheral NK cells. In contrast to IL-7, which is dispensable for BM but important for thymic NK cells, IL-15 has a direct and important role in both thymic and BM NK cell compartments. Although thymic NK cells were not affected in Flt3l(-/-) mice, Flt3l(-/-)Il2rg(-/-) mice lacked detectable thymic NK cells, suggesting that FLT3L is also important for IL-2Rg-independent maintenance of thymic NK cells. Thus, IL-2Rg cytokines and FLT3L play complementary roles and are indispensable for homeostasis of both BM and thymic dependent NK cell development, suggesting that the cytokine pathways crucial for these two distinct NK cell pathways are largely overlapping.
  •  
33.
  • Drissen, Roy, et al. (författare)
  • Distinct myeloid progenitor-differentiation pathways identified through single-cell RNA sequencing
  • 2016
  • Ingår i: Nature Immunology. - : Springer Science and Business Media LLC. - 1529-2908 .- 1529-2916. ; 17:6, s. 666-676
  • Tidskriftsartikel (refereegranskat)abstract
    • According to current models of hematopoiesis, lymphoid-primed multi-potent progenitors (LMPPs) (Lin(-)Sca-1(+)c-Kit(+)CD34(+)Flt3(hi)) and common myeloid progenitors (CMPs) (Lin(-)Sca-1(+)c-Kit(+)CD34(+)CD41(hi)) establish an early branch point for separate lineage-commitment pathways from hematopoietic stem cells, with the notable exception that both pathways are proposed to generate all myeloid innate immune cell types through the same myeloid-restricted pre-granulocyte-macrophage progenitor (pre-GM) (Lin(-)Sca-1(-)c-Kit(+)CD41(-)FcγRII/III(-)CD150(-)CD105(-)). By single-cell transcriptome profiling of pre-GMs, we identified distinct myeloid differentiation pathways: a pathway expressing the gene encoding the transcription factor GATA-1 generated mast cells, eosinophils, megakaryocytes and erythroid cells, and a pathway lacking expression of that gene generated monocytes, neutrophils and lymphocytes. These results identify an early hematopoietic-lineage bifurcation that separates the myeloid lineages before their segregation from other hematopoietic-lineage potential.
  •  
34.
  • Dybedal, Ingunn, et al. (författare)
  • Tumor necrosis factor (TNF)-mediated activation of the p55 TNF receptor negatively regulates maintenance of cycling reconstituting human hematopoietic stem cells
  • 2001
  • Ingår i: Blood. - 1528-0020. ; 98:6, s. 1782-1791
  • Tidskriftsartikel (refereegranskat)abstract
    • Hematopoietic stem cell (HSC) fate decisions between self-renewal and commitment toward differentiation are tightly regulated in vivo. Recent developments in HSC culture and improvements of human HSC assays have facilitated studies of these processes in vitro. Through such studies stimulatory cytokines critically involved in HSC maintenance in vivo have been demonstrated to also promote HSC self-renewing divisions in vitro. Evidence for negative regulators of HSC self-renewal is, however, lacking. Tumor necrosis factor (TNF), if overexpressed, has been implicated to mediate bone marrow suppression. However, whether and how TNF might affect the function of HSC with a combined myeloid and lymphoid reconstitution potential has not been investigated. In the present studies in vitro conditions recently demonstrated to promote HSC self-renewing divisions in vitro were used to study the effect of TNF on human HSCs capable of reconstituting myelopoiesis and lymphopoiesis in nonobese diabetic-severe combined immunodeficient (NOD-SCID) mice. Although all cord blood and adult bone marrow CD34(+)CD38(-) cells were capable of undergoing cell divisions in the presence of TNF, cycling HSCs exposed to TNF in vitro and in vivo were severely compromised in their ability to reconstitute NOD-SCID mice and long-term cultures. The negative effect of TNF was not dependent on the Fas pathway, and a similar effect could be observed using a mutant TNF exclusively targeting the p55 TNF receptor. TNF did not appear to enhance apoptosis or affect cell-cycle distribution of cultured progenitors, but rather promoted myeloid differentiation. Thus, TNF might regulate HSC fate by promoting their differentiation rather than self-renewal.
  •  
35.
  • Fan, Xiaolong, et al. (författare)
  • Transient disruption of autocrine TGF-beta signaling leads to enhanced survival and proliferation potential in single primitive human hemopoietic progenitor cells.
  • 2002
  • Ingår i: Journal of Immunology. - 1550-6606. ; 168:2, s. 755-762
  • Tidskriftsartikel (refereegranskat)abstract
    • Hemopoietic stem cells (HSCs) are maintained at relative quiescence by the balance between the positive and negative regulatory factors that stimulate or inhibit their proliferation. Blocking the action of negative regulatory factors may provide a new approach for inducing HSCs into proliferation. A variety of studies have suggested that TGF-beta negatively regulates cell cycle progression of HSCs. In this study, a dominant negatively acting mutant of TGF-beta type II receptor (TbetaRIIDN) was transiently expressed in HSCs by using adenoviral vector-mediated gene delivery, such that the effects of disrupting the autocrine TGF-beta signaling in HSCs can be directly examined at a single cell level. Adenoviral vectors allowing the expression of TbetaRIIDN and green fluorescence protein in the same CD34(+)CD38(-)Lin(-) cells were constructed. Overexpression of TbetaRIIDN specifically disrupted TGF-beta-mediated signaling. Autocrine TGF-beta signaling in CD34(+)CD38(-)Lin(-) cells was studied in single cell assays under serum-free conditions. Transient blockage of autocrine TGF-beta signaling in CD34(+)CD38(-)Lin(-) cells enhanced their survival. Furthermore, the overall proliferation potential and proliferation kinetics in these cells were significantly enhanced compared with the CD34(+)CD38(-)Lin(-) cells expressing green fluorescence protein alone. Therefore, we have successfully blocked the autocrine TGF-beta-negative regulatory loop of primitive hemopoietic progenitor cells.
  •  
36.
  • Fujimoto, T., et al. (författare)
  • Cdk6 blocks myeloid differentiation by interfering with Runx1 DNA binding and Runx1-C/EBP alpha interaction
  • 2007
  • Ingår i: EMBO Journal. - : Wiley. - 1460-2075 .- 0261-4189. ; 26:9, s. 2361-2370
  • Tidskriftsartikel (refereegranskat)abstract
    • Interactions between the cell cycle machinery and transcription factors play a central role in coordinating terminal differentiation and proliferation arrest. We here show that cyclin-dependent kinase 6 (Cdk6) is specifically expressed in proliferating hematopoietic progenitor cells, and that Cdk6 inhibits transcriptional activation by Runx1, but not C/ EBP alpha or PU. 1. Cdk6 inhibits Runx1 activity by binding to the runt domain of Runx1, interfering with Runx1 DNA binding and Runx1-C/ EBPa interaction. Cdk6 expression increased myeloid progenitor proliferation, and inhibited myeloid lineage-specific gene expression and terminal differentiation in vitro and in vivo. These effects of Cdk6 did not require Cdk6 kinase activity. Cdk6-mediated inhibition of granulocytic differentiation could be reversed by excess Runx1, consistent with Runx1 being the major target for Cdk6. We propose that Cdk6 downregulation in myeloid progenitors releases Runx1 from Cdk6 inhibition, thereby allowing terminal differentiation. Since Runx transcription factors play central roles in hematopoietic, neuronal and osteogenic lineages, this novel, noncanonical Cdk6 function may control terminal differentiation in multiple tissues and cell types.
  •  
37.
  •  
38.
  • Giustacchini, Alice, et al. (författare)
  • Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia
  • 2017
  • Ingår i: Nature Medicine. - : NATURE PUBLISHING GROUP. - 1078-8956 .- 1546-170X. ; 23:6, s. 692-
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent advances in single-cell transcriptomics are ideally placed to unravel intratumoral heterogeneity and selective resistance of cancer stem cell (SC) subpopulations to molecularly targeted cancer therapies. However, current single-cell RNA-sequencing approaches lack the sensitivity required to reliably detect somatic mutations. We developed a method that combines high-sensitivity mutation detection with whole-transcriptome analysis of the same single cell. We applied this technique to analyze more than 2,000 SCs from patients with chronic myeloid leukemia (CML) throughout the disease course, revealing heterogeneity of CML-SCs, including the identification of a subgroup of CML-SCs with a distinct molecular signature that selectively persisted during prolonged therapy. Analysis of nonleukemic SCs from patients with CML also provided new insights into cell-extrinsic disruption of hematopoiesis in CML associated with clinical outcome. Furthermore, we used this single-cell approach to identify a blast-crisis-specific SC population, which was also present in a subclone of CML-SCs during the chronic phase in a patient who subsequently developed blast crisis. This approach, which might be broadly applied to any malignancy, illustrates how single-cell analysis can identify subpopulations of therapy-resistant SCs that are not apparent through cell-population analysis.
  •  
39.
  • Grövdal, Michael, et al. (författare)
  • Maintenance treatment with azacytidine for patients with high-risk myelodysplastic syndromes (MDS) or acute myeloid leukaemia following MDS in complete remission after induction chemotherapy
  • 2010
  • Ingår i: British Journal of Haematology. - : Wiley. - 0007-1048 .- 1365-2141. ; 150:3, s. 293-302
  • Tidskriftsartikel (refereegranskat)abstract
    • This prospective Phase II study is the first to assess the feasibility and efficacy of maintenance 5-azacytidine for older patients with high-risk myelodysplastic syndrome (MDS), chronic myelomonocytic leukaemia and MDS-acute myeloid leukaemia syndromes in complete remission (CR) after induction chemotherapy. Sixty patients were enrolled and treated by standard induction chemotherapy. Patients that reached CR started maintenance therapy with subcutaneous azacytidine, 5/28 d until relapse. Promoter-methylation status of CDKN2B (P15 ink4b), CDH1 and HIC1 was examined pre-induction, in CR and 6, 12 and 24 months post CR. Twenty-four (40%) patients achieved CR after induction chemotherapy and 23 started maintenance treatment with azacytidine. Median CR duration was 13.5 months, >24 months in 17% of the patients, and 18-30.5 months in the four patients with trisomy 8. CR duration was not associated with CDKN2B methylation status or karyotype. Median overall survival was 20 months. Hypermethylation of CDH1 was significantly associated with low CR rate, early relapse, and short overall survival (P = 0.003). 5-azacytidine treatment, at a dose of 60 mg/m(2) was well tolerated. Grade III-IV thrombocytopenia and neutropenia occurred after 9.5 and 30% of the cycles, respectively, while haemoglobin levels increased during treatment. 5-azacytidine treatment is safe, feasible and may be of benefit in a subset of patients.
  •  
40.
  • Gu, YC, et al. (författare)
  • Laminin isoform-specific promotion of adhesion and migration of human bone marrow progenitor cells
  • 2003
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 101:3, s. 877-885
  • Tidskriftsartikel (refereegranskat)abstract
    • Laminins are alphabetagamma heterotrimeric extracellular proteins that regulate cellular functions by adhesion to integrin and nonintegrin receptors. Laminins containing alpha4 and alpha5 chains are expressed in bone marrow, but their interactions with hematopoietic progenitors are unknown. We studied human bone marrow cell adhesion to laminin-10/11 (alpha5beta1gamma1/alpha5beta2gamma1), laminin-8 (alpha4beta1gamma1), laminin-1 (alpha1beta1gamma1), and fibronectin. About 35% to 40% of CD34(+) and CD34(+)CD38(-) stem and progenitor cells adhered to laminin-10/11, and 45% to 50% adhered to fibronectin, whereas they adhered less to laminin-8 and laminin-1. Adhesion of CD34(+)CD38(-) cells to laminin-10/11 was maximal without integrin activation, whereas adhesion to other proteins was dependent on protein kinase C activation by 12-tetradecanoyl phorbol-13-acetate (TPA). Fluorescence-activated cell-sorting (FACS) analysis showed expression of integrin alpha6 chain on most CD34(+) and CD34(+)CD38(-) cells. Integrin alpha6 and beta1 chains were involved in binding of both cell fractions to laminin-10/11 and laminin-8. Laminin-10/11 was highly adhesive to lineage-committed myelomonocytic and erythroid progenitor cells and most lymphoid and myeloid cell lines studied, whereas laminin-8 was less adhesive. In functional assays, both laminin-8 and laminin-10/11 facilitated stromal-derived factor-1alpha (SDF-1alpha)-stimulated transmigration of CD34(+) cells, by an integrin alpha6 receptor-mediated mechanism. In conclusion, we demonstrate laminin isoform-specific adhesive interactions with human bone marrow stem, progenitor, and more differentiated cells. The cell-adhesive laminins affected migration of hematopoietic progenitors, suggesting a physiologic role for laminins during hematopoiesis. (C) 2003 by The American Society of Hematology.
  •  
41.
  • Hansson, Frida, et al. (författare)
  • Exit of pediatric pre-B acute lymphoblastic leukaemia cells from the bone marrow to the peripheral blood is not associated with cell maturation or alterations in gene expression
  • 2008
  • Ingår i: Molecular Cancer. - : Springer Science and Business Media LLC. - 1476-4598. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Childhood pre-B acute lymphoblastic leukemia (ALL) is a bone marrow (BM) derived disease, which often disseminates out of the BM cavity, where malignant cells to a variable degree can be found circulating in the peripheral blood (PB). Normal pre-B cells are absolutely dependent on BM stroma for survival and differentiation. It is not known whether transformed pre-B ALL cells retain any of this dependence, which possibly could impact on drug sensitivity or MRD measurements. Results: Pre-B ALL cells, highly purified by a novel method using surface expression of CD19 and immunoglobulin light chains, from BM and PB show a very high degree of similarity in gene expression patterns, with differential expression of vascular endothelial growth factor (VEGF) as a notable exception. In addition, the cell sorting procedure revealed that in 2 out of five investigated patients, a significant fraction of the malignant cells had matured beyond the pre-B cell stage. Conclusion: The transition of ALL cells from the BM into the circulation does not demand, or result in, major changes of gene expression pattern. This might indicate an independence of BM stroma on the part of transformed pre-B cells, which contrasts with that of their normal counterparts. © 2008 Hansson et al, licensee BioMed Central Ltd.
  •  
42.
  •  
43.
  •  
44.
  • Jacobsen, Sten Eirik W (författare)
  • Bytte mellom legemidler - nok en gang
  • 2008
  • Ingår i: Tidsskrift for den Norske Laegeforening. - 0807-7096. ; 128:2, s. 204-205
  • Tidskriftsartikel (refereegranskat)
  •  
45.
  • Jacobsen, Sten Eirik W (författare)
  • Defining 'stemness': Notch and Wnt join forces?
  • 2005
  • Ingår i: Nature Immunology. - : Springer Science and Business Media LLC. - 1529-2908 .- 1529-2916. ; 6:3, s. 234-236
  • Tidskriftsartikel (refereegranskat)
  •  
46.
  • Jensen, Christina, et al. (författare)
  • FLT3 ligand and not TSLP is the key regulator of IL-7-independent B-1 and B-2 B Lymphopoiesis.
  • 2008
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 112, s. 2297-2304
  • Tidskriftsartikel (refereegranskat)abstract
    • Phenotypically and functionally distinct progenitors and developmental pathways have been proposed to exist for fetally-derived B-1 and conventional B-2 cells. Although IL-7 appears to be the primary regulator of fetal and adult B lymphopoiesis in mice, considerable fetal B lymphopoiesis and postnatal B-cells are sustained in the absence of IL-7, and in man B-cell generation is suggested to be largely or entirely IL-7-independent, as severe combined immune-deficient patients with IL-7-deficiency appear to have normal B-cell numbers. However, the role of other cytokines in IL-7-independent B lymphopoiesis remains to be established. Although thymic stromal lymphopoietin (TSLP) has been proposed to be the main factor driving IL-7-independent B lymphopoiesis, and to distinguish fetal from adult B-cell progenitor development in mice, recent studies failed to support a primary role of TSLP in IL-7-independent fetal B-cell development. However, the role of TSLP in IL-7-independent adult B lymphopoiesis and in particular in regulation of B-1 cells remains to be established. Herein, we demonstrate that rather than TSLP, IL-7 and FLT3 ligand (FLT3L) are combined responsible for all B-cell generation in mice, including recently identified B-1-specified cell progenitors. Thus, the same IL-7 and FLT3L-mediated signaling regulate alternative cellular pathways of fetal and adult B-1 and B-2 B lymphopoiesis.
  •  
47.
  • Jensen, Christina, et al. (författare)
  • Permissive roles of hematopoietin and cytokine tyrosine kinase receptors in early T-cell development
  • 2008
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 111:4, s. 2083-2090
  • Tidskriftsartikel (refereegranskat)abstract
    • Although several cytokines have been demonstrated to be critical regulators of development of multiple blood cell lineages, it remains disputed to what degree they act through instructive or permissive mechanisms. Signaling through the FMS-like tyrosine kinase 3 (FLT3) receptor and the hematopoietin IL-7 receptor alpha (IL-7Ralpha) has been demonstrated to be of critical importance for sustained thymopoiesis. Signaling triggered by IL-7 and thymic stromal lymphopoietin (TSLP) is dependent on IL-7Ralpha, and both ligands have been implicated in T-cell development. However, we demonstrate that, whereas thymopoiesis is abolished in adult mice doubly deficient in IL-7 and FLT3 ligand (FLT3L), TSLP does not play a key role in IL-7-independent or FLT3L-independent T lymphopoiesis. Furthermore, whereas previous studies implicated that the role of other cytokine tyrosine kinase receptors in T lymphopoiesis might not involve permissive actions, we demonstrate that ectopic expression of BCL2 is sufficient not only to partially correct the T-cell phenotype of Flt3l(-/-) mice but also to rescue the virtually complete loss of all discernable stages of early T lymphopoiesis in Flt3l(-/-)Il7r(-/-) mice. These findings implicate a permissive role of cytokine receptors of the hematopoietin and tyrosine kinase families in early T lymphopoiesis. 
  •  
48.
  • Jensen, Christina, et al. (författare)
  • TSLP-mediated fetal B lymphopoiesis?
  • 2007
  • Ingår i: Nature Immunology. - : Springer Science and Business Media LLC. - 1529-2908 .- 1529-2916. ; 8:9, s. 897-897
  • Tidskriftsartikel (refereegranskat)
  •  
49.
  • Kharazi, Shabnam, et al. (författare)
  • Impact of gene dosage, loss of wild-type allele, and FLT3 ligand on Flt3-ITD-induced myeloproliferation
  • 2011
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 118:13, s. 3613-3621
  • Tidskriftsartikel (refereegranskat)abstract
    • Acquisition of homozygous activating growth factor receptor mutations might accelerate cancer progression through a simple gene-dosage effect. Internal tandem duplications (ITDs) of FLT3 occur in approximately 25% cases of acute myeloid leukemia and induce ligand-independent constitutive signaling. Homozygous FLT3-ITDs confer an adverse prognosis and are frequently detected at relapse. Using a mouse knockin model of Flt3-internal tandem duplication (Flt3-ITD)-induced myeloproliferation, we herein demonstrate that the enhanced myeloid phenotype and expansion of granulocyte-monocyte and primitive Lin(-)Sca1(+)c-Kit(+) progenitors in Flt3-ITD homozygous mice can in part be mediated through the loss of the second wild-type allele. Further, whereas autocrine FLT3 ligand production has been implicated in FLT3-ITD myeloid malignancies and resistance to FLT3 inhibitors, we demonstrate here that the mouse Flt3(ITD/ITD) myeloid phenotype is FLT3 ligand-independent. (Blood. 2011; 118(13):3613-3621)
  •  
50.
  • Kirstetter, Peggy, et al. (författare)
  • Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block
  • 2006
  • Ingår i: Nature Immunology. - : Springer Science and Business Media LLC. - 1529-2908 .- 1529-2916. ; 7:10, s. 1048-1056
  • Tidskriftsartikel (refereegranskat)abstract
    • Wnt signaling increases hematopoietic stem cell self-renewal and is activated in both myeloid and lymphoid malignancies, indicating involvement in both normal and malignant hematopoiesis. We report here activated canonical Wnt signaling in the hematopoietic system through conditional expression of a stable form of beta-catenin. This enforced expression led to hematopoietic failure associated with loss of myeloid lineage commitment at the granulocyte-macrophage progenitor stage; blocked erythrocyte differentiation; disruption of lymphoid development; and loss of repopulating stem cell activity. Loss of hematopoietic stem cell function was associated with decreased expression of Cdkn1a ( encoding the cell cycle inhibitor p21(cdk)), Sfpi1, Hoxb4 and Bmi1 ( encoding the transcription factors PU.1, HoxB4 and Bmi-1, respectively) and altered integrin expression in Lin(-)Sca-1(+)c-Kit(+) cells, whereas PU.1 was upregulated in erythroid progenitors. Constitutive activation of canonical Wnt signaling therefore causes multilineage differentiation block and compromised hematopoietic stem cell maintenance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 99
Typ av publikation
tidskriftsartikel (94)
konferensbidrag (5)
Typ av innehåll
refereegranskat (99)
Författare/redaktör
Jacobsen, Sten Eirik ... (99)
Buza-Vidas, Natalija (22)
Sitnicka Quinn, Ewa (22)
Bryder, David (21)
Anderson, Kristina (18)
Nerlov, Claus (16)
visa fler...
Jensen, Christina (14)
Månsson, Robert (13)
Luc, Sidinh (13)
Nygren, Jens Martin, ... (12)
Kharazi, Shabnam (11)
Nilsson, Lars (10)
Böiers, Charlotta (9)
Cheng, Min (9)
Sasaki, Yutaka (8)
Qian, Hong (8)
Mead, Adam J (8)
Hultquist, Anne (7)
Liuba, Karina (7)
Lutteropp, Michael (7)
Woll, Petter S (7)
Johansson, Bertil (6)
Adolfsson, Jörgen (6)
Thorén, Lina (6)
Åstrand-Grundström, ... (6)
Sigvardsson, Mikael, ... (6)
Wittmann, Lilian (6)
Ma, Zhi (6)
Castor, Anders (6)
Ferry, Helen (6)
Hellström-Lindberg, ... (5)
Enver, Tariq (5)
Sigvardsson, Mikael (5)
Dybedal, Ingunn (5)
Duarte, Sara (5)
NozadCharoudeh, Hojj ... (5)
Woll, Petter (5)
Ekblom, Marja (5)
Yang, Liping (4)
Ahlenius, Henrik (4)
Sandberg, Rickard (4)
Strömbeck, Bodil (4)
Breitbach, Martin (4)
Fleischmann, Bernd K (4)
Bouriez-Jones, Tipha ... (4)
Macaulay, Iain C (4)
Atkinson, Deborah (4)
Giustacchini, Alice (4)
Hokland, Peter (4)
Thongjuea, Supat (4)
visa färre...
Lärosäte
Lunds universitet (95)
Karolinska Institutet (24)
Högskolan i Halmstad (12)
Linköpings universitet (12)
Uppsala universitet (3)
Umeå universitet (2)
visa fler...
Kungliga Tekniska Högskolan (2)
Örebro universitet (1)
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (98)
Norska (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (91)
Naturvetenskap (8)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy