SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jacquot S) "

Sökning: WFRF:(Jacquot S)

  • Resultat 1-39 av 39
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Figlioli, G, et al. (författare)
  • The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer
  • 2019
  • Ingår i: NPJ breast cancer. - : Springer Science and Business Media LLC. - 2374-4677. ; 5, s. 38-
  • Tidskriftsartikel (refereegranskat)abstract
    • Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM−/− patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors.
  •  
2.
  • Bécoulet, A., et al. (författare)
  • Science and technology research and development in support to ITER and the Broader Approach at CEA
  • 2013
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:10
  • Tidskriftsartikel (refereegranskat)abstract
    • In parallel to the direct contribution to the procurement phase of ITER and Broader Approach, CEA has initiated research & development programmes, accompanied by experiments together with a significant modelling effort, aimed at ensuring robust operation, plasma performance, as well as mitigating the risks of the procurement phase. This overview reports the latest progress in both fusion science and technology including many areas, namely the mitigation of superconducting magnet quenches, disruption-generated runaway electrons, edge-localized modes (ELMs), the development of imaging surveillance, and heating and current drive systems for steady-state operation. The WEST (W Environment for Steady-state Tokamaks) project, turning Tore Supra into an actively cooled W-divertor platform open to the ITER partners and industries, is presented.
  •  
3.
  • Ciemala, M., et al. (författare)
  • Testing ab initio nuclear structure in neutron-rich nuclei : Lifetime measurements of second 2(+) state in C-16 and O-20
  • 2020
  • Ingår i: Physical Review C. - : AMER PHYSICAL SOC. - 2469-9985 .- 2469-9993. ; 101:2
  • Tidskriftsartikel (refereegranskat)abstract
    • To test the predictive power of ab initio nuclear structure theory, the lifetime of the second 2(+) state in neutron-rich O-20, tau(2(2)(+)) = 150(-30)(+80) fs, and an estimate for the lifetime of the second 2(+) state in C-16 have been obtained for the first time. The results were achieved via a novel Monte Carlo technique that allowed us to measure nuclear state lifetimes in the tens-to-hundreds of femtoseconds range by analyzing the Doppler-shifted gamma-transition line shapes of products of low-energy transfer and deep-inelastic processes in the reaction O-18 (7.0 MeV/u) + Ta-181. The requested sensitivity could only be reached owing to the excellent performances of the Advanced gamma-Tracking Array AGATA, coupled to the PARIS scintillator array and to the VAMOS++ magnetic spectrometer. The experimental lifetimes agree with predictions of ab initio calculations using two- and three-nucleon interactions, obtained with the valence-space in-medium similarity renormalization group for O-20 and with the no-core shell model for C-16. The present measurement shows the power of electromagnetic observables, determined with high-precision gamma spectroscopy, to assess the quality of first-principles nuclear structure calculations, complementing common benchmarks based on nuclear energies. The proposed experimental approach will be essential for short lifetime measurements in unexplored regions of the nuclear chart, including r-process nuclei, when intense beams, produced by Isotope Separation On-Line (ISOL) techniques, become available.
  •  
4.
  • Lawrenson, Kate, et al. (författare)
  • Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk.
  •  
5.
  • Ledoux, X., et al. (författare)
  • The Neutrons for Science Facility at SPIRAL-2
  • 2014
  • Ingår i: Nuclear Data Sheets. - : Elsevier BV. - 0090-3752 .- 1095-9904. ; 119, s. 353-356
  • Tidskriftsartikel (refereegranskat)abstract
    • The Neutrons For Science (NFS) facility is a component of SPIRAL-2 laboratory under construction at Caen (France). SPIRAL-2 is dedicated to the production of high intensity Radioactive Ions Beams (RIB). It is based on a high-power linear accelerator (LINAG) to accelerate deuterons beams in order to produce neutrons by breakup reactions on a C converter. These neutrons will induce fission in U-238 for production of radioactive isotopes. Additionally to the RIB production, the proton and deuteron beams delivered by the accelerator will be used in the NFS facility. NFS is composed of a pulsed neutron beam and irradiation stations for cross-section measurements and material studies. The beams delivered by the LINAG will allow producing intense neutron beams in the 100 keV-40 MeV energy range with either a continuous or quasi-mono-energetic spectrum. At NFS available average fluxes will be up to 2 orders of magnitude higher than those of other existing time-of-flight facilities in the 1 MeV - 40 MeV range. NFS will be a very powerful tool for fundamental physics and application related research in support of the transmutation of nuclear waste, design of future fission and fusion reactors, nuclear medicine or test and development of new detectors. The facility and its characteristics are described, and several examples of the first potential experiments are presented.
  •  
6.
  • Ledoux, X., et al. (författare)
  • The Neutrons for Science Facility at SPIRAL-2
  • 2018
  • Ingår i: Radiation Protection Dosimetry. - : OXFORD UNIV PRESS. - 0144-8420 .- 1742-3406. ; 180:1-4, s. 115-119
  • Tidskriftsartikel (refereegranskat)abstract
    • The neutrons for science (NFS) facility is a component of SPIRAL-2, the new superconducting linear accelerator built at GANIL in Caen (France). The proton and deuteron beams delivered by the accelerator will allow producing intense neutron fields in the 100 keV-40 MeV energy range. Continuous and quasi-mono-kinetic energy spectra, respectively, will be available at NFS, produced by the interaction of a deuteron beam on a thick Be converter and by the Li-7(p, n) reaction on thin converter. The pulsed neutron beam, with a flux up to two orders of magnitude higher than those of other existing time-of-flight facilities, will open new opportunities of experiments in fundamental research as well as in nuclear data measurements. In addition to the neutron beam, irradiation stations for neutron-, proton- and deuteron-induced reactions will be available for cross-sections measurements and for the irradiation of electronic devices or biological cells. NFS, whose first experiment is foreseen in 2018, will be a very powerful tool for physics, fundamental research as well as applications like the transmutation of nuclear waste, design of future fission and fusion reactors, nuclear medicine or test and development of new detectors.
  •  
7.
  • Ledoux, X., et al. (författare)
  • The neutrons for science facility at SPIRAL-2
  • 2017
  • Ingår i: ND 2016. - Les Ulis : EDP Sciences.
  • Konferensbidrag (refereegranskat)abstract
    • Numerous domains, in fundamental research as well as in applications, require the study of reactions induced by neutrons with energies from few MeV up to few tens of MeV. Reliable measurements also are necessary to improve the evaluated databases used by nuclear transport codes. This energy range covers a large number of topics like transmutation of nuclear waste, design of future fission and fusion reactors, nuclear medicine or test and development of new detectors. A new facility called Neutrons For Science (NFS) is being built for this purpose on the GANIL site at Caen (France). NFS is composed of a pulsed neutron beam for time-of-flight facility as well as irradiation stations for cross-section measurements. Neutrons will be produced by the interaction of deuteron and proton beams, delivered by the SPIRAL-2 linear accelerator, with thick or thin converters made of beryllium or lithium. Continuous and quasi-mono-energetic spectra will be available at NFS up to 40 MeV. In this fast energy region, the neutron flux is expected to be up to 2 orders of magnitude higher than at other existing time-of-flight facilities. In addition, irradiation stations for neutron-, proton- and deuteron-induced reactions will allow performing cross-section measurements by the activation technique. After a description of the facility and its characteristics, the experiments to be performed in the short and medium term will be presented.
  •  
8.
  • Fernández, A., et al. (författare)
  • Reinterpretation of excited states in 212Po: Shell-model multiplets rather than α-cluster states
  • 2021
  • Ingår i: Physical Review C. - : American Physical Society. - 2469-9985 .- 2469-9993. ; 104:5
  • Tidskriftsartikel (refereegranskat)abstract
    • A γ-ray spectroscopic study of 212Po was performed at the Grand Accélérateur National d'Ions Lourds, using the inverse kinematics α-transfer reaction 12C(208Pb,212Po)8Be and the AGATA spectrometer. A careful analysis based on γγ coincidence relations allowed us to establish 14 new excited states in the energy range between 1.9 and 3.3 MeV. None of these states, however, can be considered as candidates for the levels with spins and parities of 1− and 2− and excitation energies below 2.1 MeV, which have been predicted by recent α-cluster model calculations. A systematic comparison of the experimentally established excitation scheme of 212Po with shell-model calculations was performed. This comparison suggests that the six states with excitation energies (spins and parities) of 1744 (4−), 1751 (8−), 1787 (6−), 1946 (4−), 1986 (8−), and 2016 (6−) keV, which previously were interpreted as α-cluster states, may in fact be of positive parity and belong to low-lying shell-model multiplets. This reinterpretation of the structure of 212Po is supported by experimental information with respect to the linear polarization of γ rays, which suggests a magnetic character of the 432-keV γ ray decaying from the state at an excitation energy of 1787 keV to the 6+ yrast state, and exclusive reaction cross sections.
  •  
9.
  • Goldkuhle, A., et al. (författare)
  • Lifetime measurements in Ti-52,Ti-54 to study shell evolution toward N=32
  • 2019
  • Ingår i: Physical Review C. - : American Physical Society. - 2469-9985 .- 2469-9993. ; 100:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Lifetimes of the excited states in the neutron-rich Ti-52,Ti-54 nuclei, produced in a multinucleon-transfer reaction, were measured by employing the Cologne plunger device and the recoil-distance Doppler-shift method. The experiment was performed at the Grand Accelerateur National d'Ions Lourds facility by using the Advanced Gamma Tracking Array for the gamma-ray detection, coupled to the large-acceptance variable mode spectrometer for an event-by-event particle identification. A comparison between the transition probabilities obtained from the measured lifetimes of the 2(1)(+) to 8(1)(+) yrast states in Ti-52,Ti-54 and that from the shell-model calculations based on the well-established GXPF1A, GXPF1B, and KB3G fp shell interactions support the N = 32 subshell closure. The B(E2) values for Ti-52 determined in this work are in disagreement with the known data, but are consistent with the predictions of the shell-model calculations and reduce the previously observed pronounced staggering across the even-even titanium isotopes.
  •  
10.
  • Perez-Vidal, R. M., et al. (författare)
  • Evidence of Partial Seniority Conservation in the pi g9/2 Shell for the N=50 Isotones
  • 2022
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 129:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The reduced transition probabilities for the 4+1 -2+1 and 2+1 -0+1 transitions in 92Mo and 94Ru and for the 4+1 -2+1 and 6+1 -4+1 transitions in 90Zr have been determined in this experiment making use of a multinucleon transfer reaction. These results have been interpreted on the basis of realistic shell-model calculations in the f5=2, p3=2, p1=2, and g9=2 proton valence space. Only the combination of extensive lifetime information and large scale shell-model calculations allowed the extent of the seniority conservation in the N = 50 g9=2 orbital to be understood. The conclusion is that seniority is largely conserved in the first 71g9=2 orbital.
  •  
11.
  • Biswas, S., et al. (författare)
  • Effects of one valence proton on seniority and angular momentum of neutrons in neutron-rich(51)( 122-)(131)Sb isotopes
  • 2019
  • Ingår i: Physical Review C. - : American Physical Society. - 2469-9985 .- 2469-9993. ; 99:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Levels fulfilling the seniority scheme and relevant isomers are commonly observed features in semimagic nuclei; for example, in Sn isotopes (Z = 50). Seniority isomers in Sn, with dominantly pure neutron configurations, directly probe the underlying neutron-neutron (vv) interaction. Furthermore, an addition of a valence proton particle or hole, through neutron-proton (v pi) interaction, affects the neutron seniority as well as the angular momentum. Purpose: Benchmark the reproducibility of the experimental observables, like the excitation energies (E-x) and the reduced electric-quadrupole transition probabilities [B(E2)], with the results obtained from shell-model interactions for neutron-rich Sn and Sb isotopes with N < 82. Study the sensitivity of the aforementioned experimental observables to the model interaction components. Furthermore, explore from a microscopic point of view the structural similarity between the isomers in Sn and Sb, and thus the importance of the valence proton. Methods: The neutron-rich Sb122-131 isotopes were produced as fission fragments in the reaction Be-9(U-238, f) with 6.2 MeV/u beam energy. A unique setup, consisting of AGATA, VAMOS++, and EXOGAM detectors, was used which enabled the prompt-delayed gamma-ray spectroscopy of fission fragments in the time range of 100 ns to 200 mu s. Results: New isomers and prompt and delayed transitions were established in the even-A Sb122-131 isotopes. In the odd-A Sb122-131 isotopes, new prompt and delayed gamma-ray transitions were identified, in addition to the confirmation of the previously known isomers. The half-lives of the isomeric states and the B(E2) transition probabilities of the observed transitions depopulating these isomers were extracted. Conclusions: The experimental data was compared with the theoretical results obtained in the framework of large-scale shell-model (LSSM) calculations in a restricted model space. Modifications of several components of the shell-model interaction were introduced to obtain a consistent agreement with the excitation energies and the B(E2) transition probabilities in neutron-rich Sn and Sb isotopes. The isomeric configurations in Sn and Sb were found to be relatively pure. Furthermore, the calculations revealed that the presence of a single valence proton, mainly in the g(7/2) orbital in Sb isotopes, leads to significant mixing (due to the v pi interaction) of (i) the neutron seniorities (upsilon(v)) and (ii) the neutron angular momentum (I-v). The above features have a weak impact on the excitation energies, but have an important impact on the B(E2) transition probabilities. In addition, a constancy of the relative excitation energies irrespective of neutron seniority and neutron number in Sn and Sb was observed.
  •  
12.
  • Delafosse, C., et al. (författare)
  • Pseudospin Symmetry and Microscopic Origin of Shape Coexistence in the Ni-78 Region : A Hint from Lifetime Measurements
  • 2018
  • Ingår i: Physical Review Letters. - : AMER PHYSICAL SOC. - 0031-9007 .- 1079-7114. ; 121:19
  • Tidskriftsartikel (refereegranskat)abstract
    • Lifetime measurements of excited states of the light N = 52 isotones Kr-88, Se-86, and Ge-84 have been performed, using the recoil distance Doppler shift method and VAMOS and AGATA spectrometers for particle identification and gamma spectroscopy, respectively. The reduced electric quadrupole transition probabilities B(E2; 2(+)-> 0(+)) and B(E2; 4(+)-> 2(+)) were obtained for the first time for the hard-to-reach 84Ge. While the B(E2; 2(+)-> 0(+) ) values of Kr-88, Se-86 saturate the maximum quadrupole collectivity offered by the natural valence (3s, 2d, 1g(7/2), 1h(11/2)) space of an inert Ni-78 core, the value obtained for Ge-84 largely exceeds it, suggesting that shape coexistence phenomena, previously reported at N less than or similar to 49, extend beyond N = 50. The onset of collectivity at Z = 32 is understood as due to a pseudo-SU(3) organization of the proton single-particle sequence reflecting a clear manifestation of pseudospin symmetry. It is realized that the latter provides actually reliable guidance for understanding the observed proton and neutron single particle structure in the whole medium-mass region, from Ni to Sn, pointing towards the important role of the isovector-vector rho field in shell-structure evolution.
  •  
13.
  • Jhingan, A., et al. (författare)
  • Hg 178 and asymmetric fission of neutron-deficient pre-actinides
  • 2022
  • Ingår i: Physical Review C. - 2469-9985. ; 106:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Fission at low excitation energy is an ideal playground to probe the impact of nuclear structure on nuclear dynamics. While the importance of structural effects in the nascent fragments is well established in the (trans-)actinide region, the observation of asymmetric fission in several neutron-deficient pre-actinides can be explained by various mechanisms. To deepen our insight into that puzzle, an innovative approach based on inverse kinematics and an enhanced version of the VAMOS++ heavy-ion spectrometer was implemented at the GANIL facility, Caen. Fission of Hg178 was induced by fusion of Xe124 and Fe54. The two fragments were detected in coincidence using VAMOS++ supplemented with a new SEcond Detection arm. For the first time in the pre-actinide region, access to the pre-neutron mass and total kinetic energy distributions, and the simultaneous isotopic identification of one the fission fragment, was achieved. The present work describes the experimental approach, and discusses the pre-neutron observables in the context of an extended asymmetric-fission island located southwest of Pb208. A comparison with different models is performed, demonstrating the importance of this new asymmetric-fission island for elaborating on driving effects in fission.
  •  
14.
  • Clement, E., et al. (författare)
  • Spectroscopic quadrupole moments in 124Xe
  • 2023
  • Ingår i: Physical Review C. - : American Physical Society. - 2469-9985 .- 2469-9993. ; 107:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The Xe isotopic chain with four valence protons above the Z = 50 shell closure is an ideal laboratory for the study of the evolution of nuclear deformation. At the N = 82 shell closure, 136Xe presents all characteristics of a doubly closed shell nucleus with a spherical shape. In the very neutron-deficient isotopes close to N = 50, the alpha-decay chain of Xe was investigated to probe the radioactive decay properties near the drip-line and the magicity of 100Sn. Additionally, the Xe isotopes present higher order symmetries in the nuclear deformation such as the octupole degree of freedom near N = 60 and N = 90 or O(6) symmetry in stable isotopes.Purpose: The relevance of the O(6) symmetry has been investigated by measuring the spectroscopic quadrupole moment of the first excited states in 124Xe. In the O(6) symmetry limit, the spectroscopic quadrupole moment of collective states is expected to be null.Method: A stable 124Xe beam with energies of 4.03A MeV and 4.11A MeV was used to bombard a natW target at the GANIL facility. Excited states were populated via the safe Coulomb excitation reaction. The collision of the heavy ions with a large Z at low energy make this reaction sensitive to the diagonal E2 matrix element of the excited states. The recoils were detected in the VAMOS++ magnetic spectrometer and the gamma rays in the AGATA tracking array. The least squares fitting code GOSIA was used for the analysis to extract both E2 and M1 transitional and E2 diagonal matrix elements.Results: The rotational ground state band was populated up to the 8+1 state as well as the 2+2 and 4+2 states. Using high precision spectroscopic data to constrain the GOSIA fit, the spectroscopic quadrupole moments of the 2+1 , 4+1 , and 6+1 states were determined for the first time.Conclusions: The spectroscopic quadrupole moments were found to be negative, large, and constant in the ground state band underlining the prolate axially deformed ground state band of 124Xe. The present experimental data confirm that the is broken in 124Xe.
  •  
15.
  • Klintefjord, M., et al. (författare)
  • Measurement of lifetimes in Fe-62,Fe-64, Co-61,Co-63, and Mn-59
  • 2017
  • Ingår i: PHYSICAL REVIEW C. - 2469-9985. ; 95:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Lifetimes of the 4(1)(+) states in Fe-62,Fe-64 and the 11/2(1)(-) states in Co-61,Co-63 and Mn-59 were measured at the Grand Accelerateur National d'Ions Lourds (GANIL) facility by using the Advanced Gamma Tracking Array (AGATA) and the large-acceptance variable mode spectrometer (VAMOS++). The states were populated through multinucleon transfer reactions with a U-238 beam impinging on a Ni-64 target, and lifetimes in the picosecond range were measured by using the recoil distance Doppler shift method. The data show an increase of collectivity in the iron isotopes approaching N = 40. The reduction of the subshell gap between the nu 2p(1/2) and nu 1g(9/2) orbitals leads to an increased population of the quasi-SU(3) pair (nu 1g(9/2), nu 2d(5/2)), which causes an increase in quadrupole collectivity. This is not observed for the cobalt isotopes withN < 40 for which the neutron subshell gap is larger due to the repulsive monopole component of the tensor nucleon-nucleon interaction. The extracted experimental B(E2) values are compared with large-scale shell-model calculations and with beyond-mean-field calculations with the Gogny D1S interaction. A good agreement between calculations and experimental values is found, and the results demonstrate in particular the spectroscopic quality of the Lenzi, Nowacki, Poves, and Sieja (LNPS) shell-model interaction.
  •  
16.
  •  
17.
  • Fernandez, D., et al. (författare)
  • Experimental study of high-energy fission and quasi-fission dynamics with fusion-induced fission reactions at VAMOS(++)
  • 2023
  • Ingår i: 15TH INTERNATIONAL CONFERENCE ON NUCLEAR DATA FOR SCIENCE AND TECHNOLOGY, ND2022. - 2100-014X. ; 284
  • Konferensbidrag (refereegranskat)abstract
    • During the last decade, the use of inverse kinematics in the experimental study of fission is bringing a wealth of new observables obtained in single measurements, allowing their analysis and their correlations. An ongoing application of this technique is the basis of a series of experiments performed with the variable -mode, large -acceptance VAMOS++ spectrometer at GANIL. A recent experiment has been focused on the survival of the nuclear structure effects at high excitation energy in fission and quasi-fission. The full isotopic identification of fragments, the fission dynamics and the ratio between the production of fragments with even and odd atomic numbers, the so-called proton even -odd effect, are shown. The latter shows a different mechanism for fission and quasi -fission that could be used to separate fission from quasi-fission.
  •  
18.
  •  
19.
  •  
20.
  • Hagen, T. W., et al. (författare)
  • Evolution of nuclear shapes in odd-mass yttrium and niobium isotopes from lifetime measurements following fission reactions
  • 2017
  • Ingår i: Physical Review C: covering nuclear physics. - 2469-9985. ; 95:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Lifetimes of excited states in Y99,Y101,Nb101,Nb103, and Nb105 were measured in an experiment using the recoil distance Doppler shift method at GANIL (Grand Accélérateur National d'Ions Lourds). The neutron-rich nuclei were produced in fission reactions between a U238 beam and a Be9 target. Prompt γ rays were measured with the EXOGAM array and correlated with fission fragments that were identified in mass and atomic number with the VAMOS++ spectrometer. The measured lifetimes, together with branching ratios, provide B(M1) and B(E2) values for the strongly coupled rotational bands built on the [422]5/2+ ground state in the Y and Nb nuclei with neutron number N≥60. The comparison of the experimental results with triaxial particle-rotor calculations provides information about the evolution of the nuclear shape in this mass region.
  •  
21.
  • Jacquot, A., et al. (författare)
  • Anisotropy and inhomogeneity measurement of the transport properties of spark plasma sintered thermoelectric materials
  • 2013
  • Ingår i: Thermoelectric Materials Research and Device Development for Power Conversion and Refrigeration. - : Materials Research Society. - 9781605114675 ; , s. 89-95
  • Konferensbidrag (refereegranskat)abstract
    • We report on the development and capabilities of two new measurement systems developed at Fraunhofer-IPM. The first measurement system is based on an extension of the Van der Pauw method and is suitable for cube-shaped samples. A mapping of the electrical conductivity tensor of a Skutterudite-SPS samples produced at the Instituto de Microelectrónica de Madrid is presented. The second measurement system is a ZTmeter also developed at the Fraunhofer-IPM. It enables the simultaneous measurement of the electrical conductivity, Seebeck coefficient and thermal conductivity up to 900 K of cubes at least 5x5x5 mm 3 in size. The capacity of this measurement system for measuring the anisotropy of the transport properties of a (Bi,Sb)2Te3 SPS sample produced by KTH is demonstrated by simply rotating the samples.
  •  
22.
  • Jacquot, F., et al. (författare)
  • Lysophophatidylcholine 16:0 mediates chronic joint pain associated to rheumatic diseases through acid-sensing ion channel 3
  • 2022
  • Ingår i: Pain. - : International Association for the Study of Pain. - 0304-3959 .- 1872-6623. ; 163:10, s. 1999-2013
  • Tidskriftsartikel (refereegranskat)abstract
    • Rheumatic diseases are often associated to debilitating chronic pain, which remains difficult to treat and requires new therapeutic strategies. We had previously identified lysophosphatidylcholine (LPC) in the synovial fluids from few patients and shown its effect as a positive modulator of acid-sensing ion channel 3 (ASIC3) able to induce acute cutaneous pain in rodents. However, the possible involvement of LPC in chronic joint pain remained completely unknown. Here, we show, from 2 independent cohorts of patients with painful rheumatic diseases, that the synovial fluid levels of LPC are significantly elevated, especially the LPC16:0 species, compared with postmortem control subjects. Moreover, LPC16:0 levels correlated with pain outcomes in a cohort of osteoarthritis patients. However, LPC16:0 do not appear to be the hallmark of a particular joint disease because similar levels are found in the synovial fluids of a second cohort of patients with various rheumatic diseases. The mechanism of action was next explored by developing a pathology-derived rodent model. Intra-articular injections of LPC16:0 is a triggering factor of chronic joint pain in both male and female mice, ultimately leading to persistent pain and anxiety-like behaviors. All these effects are dependent on ASIC3 channels, which drive sufficient peripheral inputs to generate spinal sensitization processes. This study brings evidences from mouse and human supporting a role for LPC16:0 via ASIC3 channels in chronic pain arising from joints, with potential implications for pain management in osteoarthritis and possibly across other rheumatic diseases.
  •  
23.
  •  
24.
  • Ledoux, X, et al. (författare)
  • A neutron beam facility at SPIRAL-2
  • 2007
  • Ingår i: International Conference on Nuclear Data for Science and Technology, Nice, France, April 22-27, 2007, (accepted).
  • Konferensbidrag (refereegranskat)
  •  
25.
  • Lemasson, A., et al. (författare)
  • Pair and single neutron transfer with Borromean He-8
  • 2011
  • Ingår i: Physics Letters B. - : Elsevier BV. - 0370-2693 .- 1873-2445. ; 697:5, s. 454-458
  • Tidskriftsartikel (refereegranskat)abstract
    • Direct observation of the survival of Au-199 residues after 2n transfer in the He-8 + Au-197 system and the absence of the corresponding Cu-67 in the He-8 + Cu-65 system at various energies are reported. The measurements of the surprisingly large cross sections for Au-199, coupled with the integral cross sections for the various Au residues, is used to obtain the first model-independent lower limits on the ratio of 2n to in transfer cross sections from He-8 to a heavy target. A comparison of the transfer cross sections for He-6.8 on these targets highlights the differences in the interactions of these Borromean nuclei. These measurements for the most neutron-rich nuclei on different targets highlight the need to probe the reaction mechanism with various targets and represent an experimental advance towards understanding specific features of pairing in the dynamics of dilute nuclear systems.
  •  
26.
  • Lemasson, A., et al. (författare)
  • Reactions with the double-Borromean nucleus 8He
  • 2010
  • Ingår i: Physical Review C. Nuclear Physics. - 0556-2813 .- 1089-490X. ; 82:4, s. 044617-
  • Tidskriftsartikel (refereegranskat)abstract
    • Differential cross sections for elastic-scattering and neutron-transfer reactions along with cross sections for fusion in the He-8+Cu-65 system are reported at energies above the Coulomb barrier (E-lab = 19.9 and 30.6 MeV). The present work demonstrates the feasibility of using inclusive measurements of characteristic in-beam gamma rays with low-intensity (similar to 10(5) pps) radioactive ion beams to obtain the residue cross sections for fusion and neutron transfer. Exclusive measurements of gamma rays in coincidence with light charged particles have been used to further characterize the direct reactions induced by this double-Borromean nucleus. Coupled reaction channels calculations are used to illustrate the important role played by the transfer channels and to help in understanding the influence of the structure of He-8 on the reaction mechanism.
  •  
27.
  • Mantovani, G., et al. (författare)
  • Study of High-Energy Fission in Inverse Kinematics
  • 2019
  • Ingår i: IV INTERNATIONAL CONFERENCE ON NUCLEAR STRUCTURE AND DYNAMICS (NSD2019). - : EDP Sciences. - 2100-014X. - 9782759890842 ; 223
  • Konferensbidrag (refereegranskat)abstract
    • Fission at low excitation energy, is a process in which both macroscopic and microscopic aspects are involved. Some features in the total kinetic energy and in the N/Z distributions of the fragments, commonly associated with shell effects, came out in a series of recent experiments with high excitation energy fusion fission reactions in inverse kinematics. In the latest experiment of this campaign, a study of high-energy fission and quasi-fission between a U-238 beam and a series of light targets was carried out by using the aforementioned technique, in order to probe the role of the shell structure in these processes.
  •  
28.
  •  
29.
  •  
30.
  •  
31.
  • Ramos, D., et al. (författare)
  • First Direct Measurement of Isotopic Fission-Fragment Yields of 239U
  • 2019
  • Ingår i: Physical Review Letters. - 1079-7114 .- 0031-9007. ; 123:9
  • Tidskriftsartikel (refereegranskat)abstract
    • A direct and complete measurement of isotopic fission-fragment yields of U-239 has been performed for the first time. The U-239 fissioning system was produced with an average excitation energy of 8.3 MeV in one-neutron transfer reactions between a U-239 beam and a Be-9 target at Coulomb barrier energies. The fission fragments were detected and isotopically identified using the VAMOS++ spectrometer at the GANIL facility. The measurement allows us to directly evaluate the fission models at excitation energies of fast neutrons, which are relevant for next-generation nuclear reactors. The present data, in agreement with model calculations, do not support the recently reported anomaly in the fission-fragment yields of U-239, and they confirm the persistence of spherical shell effects in the Sn region at excitation energies exceeding the fission barrier by a few mega-electron volts.
  •  
32.
  • Ramos, D., et al. (författare)
  • Scission configuration of U-239 from yields and kinetic information of fission fragments
  • 2020
  • Ingår i: Physical Review C. - 2469-9985 .- 2469-9993. ; 101:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The simultaneous measurement of the isotopic fission-fragment yields and fission-fragment velocities of U-239 has been performed for the first time. The U-239 fissioning system was produced in one-neutron transfer reactions between a U-238 beam at 5.88 MeV/nucleon and a Be-9 target. The combination of inverse kinematics at low energy and the use of the VAMOS + + spectrometer at the GANIL facility allows the isotopic identification of the full fission-fragment distribution and their velocity in the reference frame of the fissioning system. The proton and neutron content of the fragments at scission, their total kinetic and total excitation energy, as well as the neutron multiplicity were determined. Information from the scission point configuration is obtained from these observables and the correlation between them. The role of the octupole-deformed proton and neutron shells in the fission-fragment production is discussed.
  •  
33.
  • Saleemi, Mohsin, et al. (författare)
  • Chemical Synthesis of Iron Antimonide (FeSb2) and Its Thermoelectric Properties
  • 2016
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 55:4, s. 1831-1836
  • Tidskriftsartikel (refereegranskat)abstract
    • Low temperature thermoelectric (TE) materials are in demand for more efficient cooling and power generation applications. Iron antimonide (FeSb2) draws great attention over the past few years because of its enhanced power factor values. Polycrystalline bulk FeSb2 nanopowder was prepared via a low-temperature molten salts approach followed by subsequent thermal treatment in synthetic air and hydrogen gas for calcination and reduction reactions, respectively. Structural analysis confirms the desired final phase with submicrometer grain size and high compaction density after consolidation using spark plasma sintering (SPS). TE transport properties revealed that the material is n-type below 150 K and p-type above this temperature; this suggests antimony vacancies in FeSb2. The electrical conductivity increased significantly, and the highest conductivity achieved was 6000 S/cm at 100 K. The maximum figure-of-merit, ZT, of 0.04 is achieved at 500 K, which is about 6 times higher than the earlier reported state-of-the art ZT value for the same material.
  •  
34.
  •  
35.
  • Saleemi, Mohsin, et al. (författare)
  • Fabrication of nanostructured bulk cobalt antimonide (CoSb3) based skutterudites via bottom-up synthesis
  • 2013
  • Ingår i: Thermoelectric Materials Research and Device Development for Power Conversion and Refrigeration. - : Materials Research Society. - 9781605114675 ; , s. 121-126
  • Konferensbidrag (refereegranskat)abstract
    • Skutterudites are known to be efficient thermoelectric (TE) materials in the temperature range from 600 K to 900 K. Dimensionless figure of merit (ZT) for filled skutterudite TE materials have been reported as ca. 1 at 800 K. Novel nano- engineering approaches and filling of the skutterudites crystal can further improve the transport properties and ultimately the ZT. Although classified among the promising TE materials, research on their large-scale production via bottom up synthetic routes is rather limited. In this work, large quantity of cobalt antimonide (CoSb3) based skutterudites nanopowder (NP) was fabricated through a room temperature coprecipitation precursor method. Dried precipitates were process by thermo-chemical treatment steps including calcination (in air) and reduction (in hydrogen). CoSb3 NPs were then mixed with silver (Ag) nanopanicles at different weight percentages (1%, 5% and 10% by wt) to form nanocomposites. Skutterudite NP was then consolidated by Spark Plasma Sintering (SPS) technique to produce highly dense compacts while maintaining the nanostructure. Temperature dependent TE characteristics of SPS'd CoSb3 and Ag containing nanocomposite samples were evaluated for transport properties, including thermal conductivity, electrical conductivity and Seebeck coefficient over the temperature range of 300-900 K. Physicochemical, structural and microstructural evaluation results are presented in detail.
  •  
36.
  • Tafti, Mohsen Yakshi, et al. (författare)
  • Fabrication and characterization of nanostructured thermoelectric FexCo1-xSb3
  • 2015
  • Ingår i: Open Chemistry. - : Walter de Gruyter GmbH. - 2391-5420. ; 13:1, s. 629-635
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel synthesis route for the fabrication of p-type nanostructured skutterudite, FexCo1-xSb3 in large quantity is reported. This scalable synthesis route provides nano-engineered material with less impact on the environment compared to conventional synthesis procedures. Several Fe substituted compositions have been synthesized to confirm the feasibility of the process. The process consists of a nano-sized precursor fabrication of iron and cobalt oxalate, and antimony oxides by chemical co-precipitation. Further thermochemical processes result in the formation of iron substituted skutterudites. The nanopowders are compacted by Spark Plasma Sintering (SPS) technique in order to maintain nanostructure. Detailed physicochemical as well as thermoelectric transport properties are evaluated. Results reveal strongly reduced thermal conductivity values compared to conventionally prepared counterparts, due to nanostructuring. P-type characteristic was observed from the Seebeck measurements while electrical conductivity is high and shows metallic behavior. The highest TE figure of merit of 0.25 at 800 K has been achieved, which is strongly enhanced with respect to the mother compound CoSb3. This suggests the promise of the utilized method of fabrication and processing for TE applications with improved performance.
  •  
37.
  • Werner, Kirstin, et al. (författare)
  • Arctic in Rapid Transition : Priorities for the future of marine and coastal research in the Arctic
  • 2016
  • Ingår i: Polar Science. - : Elsevier BV. - 1873-9652 .- 1876-4428. ; 10:3, s. 364-373
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding and responding to the rapidly occurring environmental changes in the Arctic over the past few decades require new approaches in science. This includes improved collaborations within the scientific community but also enhanced dialogue between scientists and societal stakeholders, especially with Arctic communities. As a contribution to the Third International Conference on Arctic Research Planning (ICARPIII), the Arctic in Rapid Transition (ART) network held an international workshop in France, in October 2014, in order to discuss high-priority requirements for future Arctic marine and coastal research from an early-career scientists (ECS) perspective. The discussion encompassed a variety of research fields, including topics of oceanographic conditions, sea-ice monitoring, marine biodiversity, land-ocean interactions, and geological reconstructions, as well as law and governance issues. Participants of the workshop strongly agreed on the need to enhance interdisciplinarity in order to collect comprehensive knowledge about the modern and past Arctic Ocean's geo-ecological dynamics. Such knowledge enables improved predictions of Arctic developments and provides the basis for elaborate decision-making on future actions under plausible environmental and climate scenarios in the high northern latitudes. Priority research sheets resulting from the workshop's discussions were distributed during the ICARPIII meetings in April 2015 in Japan, and are publicly available online. (C) 2016 Elsevier B.V. and NIPR. All rights reserved.
  •  
38.
  • Yakhshi Tafti, Mohsen, et al. (författare)
  • Fabrication and characterization of nanostructured bulk skutterudites
  • 2013
  • Ingår i: 2013 MRS Spring Meeting - Symposium H/I/V – Nanoscale Thermoelectric Materials, Thermal and Electrical Transport, and Applications to Solid-State Cooling and Power Generation. - : Materials Research Society. - 9781605115207 ; , s. 105-110
  • Konferensbidrag (refereegranskat)abstract
    • Latest nanotechnology concepts applied in thermoelectric (TE) research have opened many new avenues to improve the ZT value. Low dimensional structures can improve the ZT value as compared to bulk materials by substantial reduction in the lattice thermal conductivity, κL. However, the materials were not feasible for the industrial scale production of macroscopic devices because of complicated and costly manufacturing processes involved. Bulk nanostructured (NS) TEs are normally fabricated using a bulk process rather than a nano- fabrication process, which has the important advantage of producing in large quantities and in a form that is compatible with commercially available TE devices. We developed fabrication strategies for bulk nanostructured skutterudite materials based on FexCo1-xSb3. The process is based on precipitation of a precursor material with the desired metal atom composition, which is then exposed to thermochemical processing of calcination followed by reduction. The resultant material thus formed maintains nanostructured particles which are then compacted using Spark Plasma Sintering (SPS) by utilizing previously optimized process parameters. Microstructure, crystallinity, phase composition, thermal stability and temperature dependent transport property evaluation has been performed for compacted NS Fe xCo1-xSb3. Evaluation results are presented in detail, suggesting the feasibility of devised strategy for bulk quantities of doped TE nanopowder fabrication.
  •  
39.
  • Yakhshi Tafti, Mohsen, 1983-, et al. (författare)
  • Temperature Dependent Structure Stability Studies on Thermoelectric Yb0.025Fe0.3Co0.7Sb3
  • 2015
  • Ingår i: Materials Research Society Proceeding. - : Materials Research Society.
  • Konferensbidrag (refereegranskat)abstract
    • Depending on their application temperature thermoelectric (TE) materials are classified in three main categories; as low (up to 250°C), intermediate (up to 550°C) and high (above 600°C) temperature. Currently, Skutterudites (CoSb3) based materials have shown promising results in the intermediate temperature range (300-500°C). This family of material is highly suitable for automotive, marine transportation and industrial power generation applications to recover the waste heat from the exhaust and generate electricity. Conventional TE modules need p- and n-type semiconductor materials and for the skutterudite family, iron (Fe) has proven to be among the best candidates for the substitution of cobalt sites. Additionally, rare earths are introduced as rattlers in the crystal cages of the skutterudite to decrease the thermal conductivity, thus improving the figure of merit ZT of the TE material. For practical application for device fabrication, stability of these materials is of great importance. Compositional stability is being addressed as the material decomposes above certain temperature. Temperature dependent x-ray diffraction study was performed on Fe substituted, Yb-filled skutterudites, using Beam Line I711 at MAX LAB, to observe the crystal structure as a function of temperature. Diffraction patterns were collected from room temperature up to 500°C by utilizing Huber furnace. The results show success in filling process showing almost 80% reduction of the thermal conductivity from bulk. Additionally the thermal expansion coefficient value was within the average value for skutterudites which proves practical application of this powder for industrial applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-39 av 39

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy