SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jagudin Elmir) "

Sökning: WFRF:(Jagudin Elmir)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Lima, Gustavo M A, et al. (författare)
  • FragMAX : the fragment-screening platform at the MAX IV Laboratory
  • 2020
  • Ingår i: Acta Crystallographica Section D: Structural Biology. - 2059-7983. ; 76:Pt 8, s. 771-777
  • Tidskriftsartikel (refereegranskat)abstract
    • Advances in synchrotron storage rings and beamline automation have pushed data-collection rates to thousands of data sets per week. With this increase in throughput, massive projects such as in-crystal fragment screening have become accessible to a larger number of research groups. The quality of support offered at large-scale facilities allows medicinal chemistry-focused or biochemistry-focused groups to supplement their research with structural biology. Preparing the experiment, analysing multiple data sets and prospecting for interesting complexes of protein and fragments require, for both newcomers and experienced users, efficient management of the project and extensive computational power for data processing and structure refinement. Here, FragMAX, a new complete platform for fragment screening at the BioMAX beamline of the MAX IV Laboratory, is described. The ways in which users are assisted in X-ray-based fragment screenings and in which the fourth-generation storage ring available at the facility is best exploited are also described.
  •  
3.
  • Lima, Gustavo M.A., et al. (författare)
  • FragMAXapp : Crystallographic fragment-screening data-analysis and project-management system
  • 2021
  • Ingår i: Acta Crystallographica Section D: Structural Biology. - 2059-7983. ; 77, s. 799-808
  • Tidskriftsartikel (refereegranskat)abstract
    • Crystallographic fragment screening (CFS) has become one of the major techniques for screening compounds in the early stages of drug-discovery projects. Following the advances in automation and throughput at modern macromolecular crystallography beamlines, the bottleneck for CFS has shifted from collecting data to organizing and handling the analysis of such projects. The complexity that emerges from the use of multiple methods for processing and refinement and to search for ligands requires an equally sophisticated solution to summarize the output, allowing researchers to focus on the scientific questions instead of on software technicalities. FragMAXapp is the fragment-screening project-management tool designed to handle CFS projects at MAX IV Laboratory. It benefits from the powerful computing infrastructure of large-scale facilities and, as a web application, it is accessible from everywhere.
  •  
4.
  • Pop, Adrian Dan Iosif, 1975-, et al. (författare)
  • OpenModelica Development Environment with Eclipse Integration for Browsing, Modeling, and Debugging
  • 2006
  • Konferensbidrag (refereegranskat)abstract
    • The OpenModelica (MDT) Eclipse Plugin integrates the OpenModelica compiler and debugger with the Eclipse Integrated Development Environment Framework.. MDT, together with the OpenModelica compiler and debugger, provides an environment for Modelica development projects. This includes browsing, code completion through menus or popups, automatic indentation even of syntactically incorrect models, and model debugging. Simulation and plotting is also possible from a special command window. To our knowledge, this is the first Eclipse plugin for an equationbased language.
  •  
5.
  • Ursby, Thomas, et al. (författare)
  • BioMAX the first macromolecular crystallography beamline at MAX IV Laboratory
  • 2020
  • Ingår i: Journal of Synchrotron Radiation. - Chichester : Wiley-Blackwell. - 0909-0495 .- 1600-5775. ; 27, s. 1415-1429
  • Tidskriftsartikel (refereegranskat)abstract
    • BioMAX is the first macromolecular crystallography beamline at the MAX IV Laboratory 3 GeV storage ring, which is the first operational multi-bend achromat storage ring. Due to the low-emittance storage ring, BioMAX has a parallel, high-intensity X-ray beam, even when focused down to 20 μm × 5 μm using the bendable focusing mirrors. The beam is tunable in the energy range 5-25 keV using the in-vacuum undulator and the horizontally deflecting double-crystal monochromator. BioMAX is equipped with an MD3 diffractometer, an ISARA high-capacity sample changer and an EIGER 16M hybrid pixel detector. Data collection at BioMAX is controlled using the newly developed MXCuBE3 graphical user interface, and sample tracking is handled by ISPyB. The computing infrastructure includes data storage and processing both at MAX IV and the Lund University supercomputing center LUNARC. With state-of-the-art instrumentation, a high degree of automation, a user-friendly control system interface and remote operation, BioMAX provides an excellent facility for most macromolecular crystallography experiments. Serial crystallography using either a high-viscosity extruder injector or the MD3 as a fixed-target scanner is already implemented. The serial crystallography activities at MAX IV Laboratory will be further developed at the microfocus beamline MicroMAX, when it comes into operation in 2022. MicroMAX will have a 1 μm × 1 μm beam focus and a flux up to 1015 photons s with main applications in serial crystallography, room-temperature structure determinations and time-resolved experiments.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy