SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jahagirdar Adwait) "

Sökning: WFRF:(Jahagirdar Adwait)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ganvir, Ashish, 1991-, et al. (författare)
  • Novel utilization of liquid feedstock in high velocity air fuel (HVAF) spraying to deposit solid lubricant reinforced wear resistant coatings
  • 2021
  • Ingår i: Journal of Materials Processing Technology. - : Elsevier BV. - 0924-0136 .- 1873-4774. ; 295
  • Tidskriftsartikel (refereegranskat)abstract
    • The ability to axially inject liquid feedstock has encouraged the thermal spray research community to explore this concept to deposit coatings for various next generation functional applications. The current study explores the utilization of liquid feedstock in high velocity air fuel (HVAF) spraying to deposit solid lubricant reinforced wear resistant coatings for the first time. The study successfully demonstrates the use of a powder-suspension hybrid processing approach to incorporate a solid lubricant Boron Nitride (as suspension) in a wear resistant Cr3C2–NiCr (as powder) cermet matrix. Coatings were characterized using Scanning Electron Microscopy and Raman Spectroscopy to analyze their microstructure and phase constitution. The results show that the tribological performance of the hexagonal boron nitride (hBN)-incorporated composite coating was significantly better than the traditional powder-derived Cr3C2–NiCr coating. Such hBN-incorporated composite coatings are needed to improve the mechanical properties and enhance the overall tribological performance of metallic components used in various applications, especially at high temperature such as cylinder bore, pistons, deformation tools, etc. The limitations of liquid based lubricants at high temperature motivates the use of hBN reinforced composite coatings as it can form a protective solid lubrication tribo-film. The study concludes that the emerging HVAF technology can accommodate liquid feedstock and be successfully utilized to deposit hybrid powder-suspension composite coatings to create multi length scale microstructures which can be attractive for combining different tribological attributes in the same coatings system.
  •  
2.
  • Ganvir, Ashish, 1991-, et al. (författare)
  • Tribological performance assessment of Al2O3-YSZ composite coatings deposited by hybrid powder-suspension plasma spraying
  • 2021
  • Ingår i: Surface and Coatings Technology. - : Elsevier BV. - 0257-8972 .- 1879-3347. ; 409
  • Tidskriftsartikel (refereegranskat)abstract
    • The advent of high-throughput plasma spray systems that allow axial feeding encourages the study of using liquid feedstock for various next-generation functional applications. The current study explores the benefit of such a plasma spray system to deposit hybrid powder-suspension Al2O3-YSZ ceramic matrix composite (CMC) coatings for tribological applications. The tribological performance of the hybrid processed CMC coatings was assessed using scratch, ball-on-plate wear and erosion tests and compared with that of monolithic powder-derived Al2O3 coatings. As-deposited and tribo-tested coatings were characterized using Scanning Electron Microscopy, X-ray Diffraction and Energy Dispersive Spectroscopy to analyse their microstructure and phase constitution. The results showed that the tribological performance of the hybrid powder-suspension Al2O3-YSZ CMC coating was significantly improved by enhancing the wear resistance under scratch, dry sliding ball-on-plate and erosion tests as compared to the conventional APS deposited monolithic Al2O3 coating. About 36% decrease in the dry sliding ball-on-plate specific wear rate and up to 50% decrease in the erosion wear rate was noted in the hybrid powder-suspension Al2O3-YSZ CMC coating as compared to the conventional APS deposited monolithic Al2O3 coating. The study concludes that the hybrid powder-suspension route can create CMC coatings with unique multi-length scale microstructures which can be attractive for combining different tribological attributes in the same coating system.
  •  
3.
  • Karthick Raaj, R., et al. (författare)
  • Exploring grinding and burnishing as surface post-treatment options for electron beam additive manufactured Alloy 718
  • 2020
  • Ingår i: Surface & Coatings Technology. - : Elsevier BV. - 0257-8972 .- 1879-3347. ; 397
  • Tidskriftsartikel (refereegranskat)abstract
    • Numerous additive manufacturing (AM) techniques have been developed over the past decade. Features like immense freedom of intricate part design and shorter lead time make AM routes promising for a wide range of applications spanning aerospace, marine and automobile sectors. Among the various metal AM processes, Electron Beam Additive Manufacturing (EBAM) is being widely explored to realise the potential of Ni-based superalloys and Ti alloys for varied high-performance applications. A novel attempt has been made in this paper to assess the surface integrity of as-built EBAM nickel-based superalloy 718 (AB) subjected to grinding (G), Low Plasticity Burnishing (LPB) and their sequential combination. Apart from their influence on sub-surface microstructures, the effect of process variables during the above post-treatments on the residual stress profiles was also investigated. Results revealed that G + LPB results in about 0.6 ÎŒm lower surface roughness, 17% improved microhardness compared to AB + LPB, and higher compressive surface residual stress as compared to LPB processed EBAM samples. The sequential grinding and LPB - improved microhardness, was also found to extend about 500 ÎŒm more when compared to the LPB process. The G + LPB, which is greatly influenced by the prior grinding, smoothens the surface and thus results in a better surface finish. Highest hardness, superior surface finish, reduced porosity and improved compressive residual stress were observed in samples that adopted the AB + G + LPB sequence over other samples, with the LPB step at 40 MPa yielding the best results. © 2020 Elsevier B.V.
  •  
4.
  • Mahade, Satyapal, 1987-, et al. (författare)
  • Tailoring microstructure of double-layered thermal barrier coatings deposited by suspension plasma spray for enhanced durability
  • 2021
  • Ingår i: Surface & Coatings Technology. - : Elsevier B.V.. - 0257-8972 .- 1879-3347. ; 425
  • Tidskriftsartikel (refereegranskat)abstract
    • Gadolinium zirconate (GZ)-based TBCs comprising GZ as the top layer and yttria stabilized zirconia (YSZ) as the base layer, are attractive double-layered thermal barrier coatings (TBCs) for high temperature gas turbine engine application. This work attempts to understand the influence of individual layer microstructure on the durability of GZ/YSZ double-layered TBCs processed by suspension plasma spray (SPS). Two different spray parameters were chosen to obtain a combination of three microstructurally distinct GZ/YSZ double-layered TBCs i.e. GZ porous (P)/YSZ porous (P), GZ dense (D)/YSZ porous (P) and GZ dense (D)/YSZ dense (D). Thermal diffusivity of the as-deposited coatings was measured using Laser Flash Analysis (LFA) technique and the thermal conductivity of the TBCs was calculated. The GZ/YSZ double-layered TBC specimens were subjected to two different durability tests, i.e. thermal cyclic fatigue (TCF) and burner rig test (BRT). Sintering behavior of the individual layer TBC microstructures was evaluated by comparing the porosity evolution in as-deposited and TCF tested TBCs. Fracture toughness measurements performed on each layer of the double-layered TBCs were correlated with the durability results. Thermal cycling results amply demonstrate that the individual layer microstructure of GZ/YSZ double-layered TBC influenced its durability. Detailed failure analysis of the TCF and BRT failed specimens revealed similar failure modes for GZ (P)/YSZ (P), GZ (D)/YSZ (P) and GZ (D/YSZ (D) TBCs under identical thermal cyclic test conditions. However, failure modes differed when subjected to different thermal cyclic test conditions (TCF and BRT) and the probable causes are discussed. Findings from this work provide key insights on designing durable GZ/YSZ double-layered TBCs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy