SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Jahnke Marlene) "

Search: WFRF:(Jahnke Marlene)

  • Result 1-18 of 18
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Billman, Maja, et al. (author)
  • Small carbon stocks in sediments of Baltic Sea eelgrass meadows
  • 2023
  • In: Frontiers in Marine Science. - 2296-7745. ; 10
  • Journal article (peer-reviewed)abstract
    • Seagrass meadows act as an effective carbon sink and store carbon in the sediments for substantial periods of time. The drivers of carbon sequestration are complex, and global and regional estimates of carbon stocks have large uncertainties. Here, we report new carbon stock estimates from 14 sites along the Swedish coast and compile existing literature to estimate the magnitude of carbon stocks of Zostera marina (eelgrass) meadows in the Baltic Sea. Eelgrass meadows in the Baltic Sea have considerably lower carbon content and lower stocks (0.25 ± 0.21% DW, 635 ± 321 g C m-2) than in the Kattegat-Skagerrak region (3.25 ± 2.78% DW, 3457 ± 3382 g C m-2) and the average for temperate regions in general (1.4 ± 0.4% DW, 2721 ± 989 g C m-2). Unfavorable growing conditions for eelgrass in the Baltic Sea often lead to meadows occurring in areas of high hydrodynamics, preventing significant carbon accumulation. Stable isotopes revealed that the dominating source of organic carbon in the meadows was planktonic, further highlighting that Baltic Sea eelgrass meadows are not major carbon reservoirs in comparison to unvegetated sediments and other seagrass areas. The results also highlight that environmental conditions drive intraspecific variation of carbon sequestration on large spatial scales. Overall, the carbon stocks and sequestration potential in eelgrass meadows of the Baltic Sea are small compared to other temperate regions.
  •  
2.
  • De Wit, Pierre, 1978, et al. (author)
  • A decade of progress in marine evolutionary biology
  • 2022
  • In: Evolutionary Applications. - : Wiley. - 1752-4571. ; 16:2, s. 193-201
  • Journal article (other academic/artistic)abstract
    • This article summarizes the Evolutionary Applications Special Issue, “A decade of progress in Marine Evolutionary Biology.” The globally connected ocean, from its pelagic depths to its highly varied coastlines, inspired Charles Darwin to develop the theory of evolution during the voyage of the Beagle. As technology has developed, there has been a dramatic increase in our knowledge about life on our blue planet. This Special Issue, composed of 19 original papers and seven reviews, represents a small contribution to the larger picture of recent research in evolutionary biology, and how such advancements come about through the connection of researchers, their fields, and their knowledge. The first European network for marine evolutionary biology, the Linnaeus Centre for Marine Evolutionary Biology (CeMEB), was developed to study evolutionary processes in the marine environment under global change. Though hosted by the University of Gothenburg in Sweden, the network quickly grew to encompass researchers throughout Europe and beyond. Today, more than a decade after its foundation, CeMEB's focus on the evolutionary consequences of global change is more relevant than ever, and knowledge gained from marine evolution research is urgently needed in management and conservation. This Special Issue, organized and developed through the CeMEB network, contains contributions from all over the world and provides a snapshot of the current state of the field, thus forming an important basis for future research directions.
  •  
3.
  • Duffy, J. Emmett, et al. (author)
  • A Pleistocene legacy structures variation in modern seagrass ecosystems
  • 2022
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 119:32
  • Journal article (peer-reviewed)abstract
    • Distribution of Earth's biomes is structured by the match between climate and plant traits, which in turn shape associated communities and ecosystem processes and services. However, that climate-trait match can be disrupted by historical events, with lasting ecosystem impacts. As Earth's environment changes faster than at any time in human history, critical questions are whether and how organismal traits and ecosystems can adjust to altered conditions. We quantified the relative importance of current environmental forcing versus evolutionary history in shaping the growth form (stature and biomass) and associated community of eelgrass (Zostera marina), a widespread foundation plant of marine ecosystems along Northern Hemisphere coastlines, which experienced major shifts in distribution and genetic composition during the Pleistocene. We found that eelgrass stature and biomass retain a legacy of the Pleistocene colonization of the Atlantic from the ancestral Pacific range and of more recent within-basin bottlenecks and genetic differentiation. This evolutionary legacy in turn influences the biomass of associated algae and invertebrates that fuel coastal food webs, with effects comparable to or stronger than effects of current environmental forcing. Such historical lags in phenotypic acclimatization may constrain ecosystem adjustments to rapid anthropogenic climate change, thus altering predictions about the future functioning of ecosystems. 
  •  
4.
  •  
5.
  • Jahnke, Marlene, et al. (author)
  • Biophysical models of dispersal contribute to seascape genetic analyses
  • 2022
  • In: Philosophical Transactions of the Royal Society of London. Biological Sciences. - : The Royal Society. - 0962-8436 .- 1471-2970. ; 377
  • Journal article (peer-reviewed)abstract
    • Dispersal is generally difficult to directly observe. Instead, dispersal is often inferred from genetic markers and biophysical modelling where a correspon- dence indicates that dispersal routes and barriers explain a significant part of population genetic differentiation. Biophysical models are used for wind- driven dispersal in terrestrial environments and for propagules drifting with ocean currents in the sea. In the ocean, such seascape genetic or seascape genomic studies provide promising tools in applied sciences, as actions within management and conservation rely on an understanding of population structure, genetic diversity and presence of local adaptations, all dependent on dispersal within the metapopulation. Here, we surveyed 87 studies that combine population genetics and biophysical models of dis- persal. Our aim was to understand if biophysical dispersal models can generally explain genetic differentiation. Our analysis shows that genetic differentiation and lack of genetic differentiation can often be explained by dispersal, but the realism of the biophysical model, as well as local geomor- phology and species biology also play a role. The review supports the use of a combination of both methods, and we discuss our findings in terms of recommendations for future studies and pinpoint areas where further development is necessary, particularly on how to compare both approaches. This article is part of the theme issue ‘Species’ ranges in the face of changing environments (part I)’.
  •  
6.
  • Jahnke, Marlene, et al. (author)
  • Integrating genetics, biophysical, and demographic insights identifies critical sites for seagrass conservation
  • 2020
  • In: Ecological Applications. - : Wiley. - 1051-0761 .- 1939-5582. ; 30:6
  • Journal article (peer-reviewed)abstract
    • The eelgrass Zostera marina is an important foundation species of coastal areas in the Northern Hemisphere, but is continuing to decline, despite management actions. The development of new management tools is therefore urgent in order to prioritize limited resources for protecting meadows most vulnerable to local extinctions and identifying most valuable present and historic meadows to protect and restore, respectively. We assessed 377 eelgrass meadows along the complex coastlines of two fjord regions on the Swedish west coast-one is currently healthy and the other is substantially degraded. Shoot dispersal for all meadows was assessed with Lagrangian biophysical modeling (scale: 100-1,000 m) and used for barrier analysis and clustering; a subset (n = 22) was also assessed with population genetic methods (20 microsatellites) including diversity, structure, and network connectivity. Both approaches were in very good agreement, resulting in seven subpopulation groupings or management units (MUs). The MUs correspond to a spatial scale appropriate for coastal management of "waterbodies" used in the European Water Framework Directive. Adding demographic modeling based on the genetic and biophysical data as a third approach, we are able to assess past, present, and future metapopulation dynamics to identify especially vulnerable and valuable meadows. In a further application, we show how the biophysical approach, using eigenvalue perturbation theory (EPT) and distribution records from the 1980s, can be used to identify lost meadows where restoration would best benefit the present metapopulation. The combination of methods, presented here as a toolbox, allows the assessment of different temporal and spatial scales at the same time, as well as ranking of specific meadows according to key genetic, demographic and ecological metrics. It could be applied to any species or region, and we exemplify its versatility as a management guide for eelgrass along the Swedish west coast.
  •  
7.
  • Jahnke, Marlene, et al. (author)
  • Population genetic structure and connectivity of the seagrass Thalassia hemprichii in the Western Indian Ocean is influenced by predominant ocean currents
  • 2019
  • In: Ecology and Evolution. - : John Wiley & Sons. - 2045-7758. ; 9:16, s. 8953-8964
  • Journal article (peer-reviewed)abstract
    • This study is the first large-scale genetic population study of a widespread climax species of seagrass, Thalassia hemprichii, in the Western Indian Ocean (WIO). The aim was to understand genetic population structure and connectivity of T. hemprichii in relation to hydrodynamic features. We genotyped 205 individual seagrass shoots from 11 sites across the WIO, spanning over a distance of similar to 2,700 km, with twelve microsatellite markers. Seagrass shoots were sampled in Kenya, Tanzania (mainland and Zanzibar), Mozambique, and Madagascar: 4-26 degrees S and 33-48 degrees E. We assessed clonality and visualized genetic diversity and genetic population differentiation. We used Bayesian clustering approaches (TESS) to trace spatial ancestry of populations and used directional migration rates (DivMigrate) to identify sources of gene flow. We identified four genetically differentiated groups: (a) samples from the Zanzibar channel; (b) Mozambique; (c) Madagascar; and (d) the east coast of Zanzibar and Kenya. Significant pairwise population genetic differentiation was found among many sites. Isolation by distance was detected for the estimated magnitude of divergence (D-EST), but the three predominant ocean current systems (i.e., East African Coastal Current, North East Madagascar Current, and the South Equatorial Current) also determine genetic connectivity and genetic structure. Directional migration rates indicate that Madagascar acts as an important source population. Overall, clonality was moderate to high with large differences among sampling sites, indicating relatively low, but spatially variable sexual reproduction rates. The strongest genetic break was identified for three sites in the Zanzibar channel. Although isolation by distance is present, this study suggests that the three regionally predominant ocean current systems (i.e., East African Coastal Current, North East Madagascar Current, and the South Equatorial Current) rather than distance determine genetic connectivity and structure of T. hemprichii in the WIO. If the goal is to maintain genetic connectivity of T. hemprichii within the WIO, conservation planning and implementation of marine protection should be considered at the regional scale-across national borders.
  •  
8.
  • Jahnke, Marlene, et al. (author)
  • Potential and realized connectivity of the seagrass Posidonia oceanica and their implication for conservation
  • 2017
  • In: Diversity and Distributions. - : Wiley. - 1366-9516. ; 23:12, s. 1423-1434
  • Journal article (peer-reviewed)abstract
    • Aim: Connectivity assessments are crucial to large-scale conservation planning, in particular for establishing and monitoring connected networks of marine protected areas (MPAs). Using biophysical modelling and genetic analyses, we assessed potential and realized connectivity among MPA populations of a benthic foundation species, the Mediterranean endemic seagrass Posidonia oceanica. Methods: We assessed potential and realized connectivity among eight P.oceanica meadows, mostly located in MPAs. Potential connectivity was assessed over a time horizon of 10years via an individual-based biophysical model whose physical component relies on fine-scale spatio-temporal ocean circulation fields. Genetic assessments of realized connectivity were carried out by means of a set of 14 neutral microsatellite loci, as well as a larger dataset of 19 loci including outlier loci that did not conform to expectations under neutrality. Results: Our findings point out a relatively high potential connectivity through long-range dispersal of floating fruits. Genetic connectivity analyses show a complex scenario with an apparent lower realized connectivity. The P.oceanica meadow within Torre Guaceto MPA (TOG), a well-enforced MPA within our study area, showed one of the highest levels of genotypic richness, indicative of high levels of sexual reproduction and/or recruitment of foreign genotypes. Both biophysical modelling and population genetics indicate that TOG is important to ensure the viability of the species at the local scale, and does likely play a key role as a source of propagules for the whole Adriatic area. Main conclusions: Our results show that realized dispersal does not necessarily match with the potential for dispersal. Still, both genetic and physical connectivity analyses show good agreement in identifying hotspots of connectivity. Such information can guide management of networks of MPAs and advance conservation of marine biodiversity.
  •  
9.
  • Jahnke, Marlene, et al. (author)
  • Seascape genetics and biophysical connectivity modelling support conservation of the seagrass Zostera marina in the Skagerrak-Kattegat region of the eastern North Sea
  • 2018
  • In: Evolutionary Applications. - : Wiley. - 1752-4563 .- 1752-4571. ; 11:5, s. 645-661
  • Journal article (peer-reviewed)abstract
    • Maintaining and enabling evolutionary processes within meta-populations are critical to resistance, resilience and adaptive potential. Knowledge about which populations act as sources or sinks, and the direction of gene flow, can help to focus conservation efforts more effectively and forecast how populations might respond to future anthropogenic and environmental pressures. As a foundation species and habitat provider, Zostera marina (eelgrass) is of critical importance to ecosystem functions including fisheries. Here, we estimate connectivity of Z.marina in the Skagerrak-Kattegat region of the North Sea based on genetic and biophysical modelling. Genetic diversity, population structure and migration were analysed at 23 locations using 20 microsatellite loci and a suite of analytical approaches. Oceanographic connectivity was analysed using Lagrangian dispersal simulations based on contemporary and historical distribution data dating back to the late 19th century. Population clusters, barriers and networks of connectivity were found to be very similar based on either genetic or oceanographic analyses. A single-generation model of dispersal was not realistic, whereas multigeneration models that integrate stepping-stone dispersal and extant and historic distribution data were able to capture and model genetic connectivity patterns well. Passive rafting of flowering shoots along oceanographic currents is the main driver of gene flow at this spatial-temporal scale, and extant genetic connectivity strongly reflects the ghost of dispersal past sensu Benzie, . The identification of distinct clusters, connectivity hotspots and areas where connectivity has become limited over the last century is critical information for spatial management, conservation and restoration of eelgrass.
  •  
10.
  • Jahnke, Marlene, et al. (author)
  • Seascape genomics identify adaptive barriers correlated to tidal amplitude in the shore crab Carcinus maenas
  • 2022
  • In: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X. ; 31:7, s. 1980-94
  • Journal article (peer-reviewed)abstract
    • Most marine invertebrates disperse during a planktonic larval stage that may drift for weeks with ocean currents. A challenge for larvae of coastal species is to return to coastal nursery habitats. Shore crab (Carcinus maenas L.) larvae are known to show tidal rhythmicity in vertical migration in tidal areas and circadian rhythmicity in micro-tidal areas, which seems to increase successful coastal settlement. We studied genome-wide differentiation based on 24,000 SNPs of 12 native populations of shore crab sampled from a large tidal amplitude gradient from macro-tidal (ca. 8 m) to micro-tidal (ca. 0.2 m). Dispersal and recruitment success of larvae was assessed with a Lagrangian biophysical model, which showed a strong effect of larval behavior on long-term connectivity, and dispersal barriers that partly coincided with different tidal environments. The genetic population structure showed a subdivision of the samples into three clusters, which represent micro-, meso- and macro-tidal areas. The genetic differentiation was mostly driven by 0.5% outlier loci, which showed strong allelic clines located at the limits between the three tidal areas. Demographic modelling suggested that the two genetic barriers have different origins. Differential gene expression of two clock genes (cyc and pdp1) further highlighted phenotypic differences among genetic clusters that are potentially linked to the differences in larval behaviour. Taken together, our seascape genomic study suggest that tidal regime acts as a strong selection force on shore crab population structure, consistent with larval behaviour affecting dispersal and recruitment success.
  •  
11.
  • Johannesson, Kerstin, 1955, et al. (author)
  • Ten years of marine evolutionary biology - challenges and achievements of a multidisciplinary research initiative
  • 2023
  • In: Evolutionary Applications. - : Wiley. - 1752-4571. ; 16:2, s. 530-41
  • Journal article (peer-reviewed)abstract
    • The Centre for Marine Evolutionary Biology (CeMEB) at the University of Gothenburg, Sweden, was established in 2008 through a 10-year research grant of 8.7 m€ to a team of senior researchers. Today, CeMEB members have contributed >500 scientific publications, 30 PhD theses and have organised 75 meetings and courses, including 18 three-day meetings and four conferences. What are the footprints of CeMEB, and how will the centre continue to play a national and international role as an important node of marine evolutionary research? In this perspective arcticle we first look back over the 10 years of CeMEB activities and briefly survey some of the many achievements of CeMEB. We furthermore compare the initial goals, as formulated in the grant application, with what has been achieved, and discuss challenges and milestones along the way. Finally, we bring forward some general lessons that can be learnt from a research funding of this type, and we take also look ahead, discussing how CeMEB’s achievements and lessons can be used as a springboard to the future of marine evolutionary biology.
  •  
12.
  • Knutsen, Halvor, et al. (author)
  • Combining population genomics with demographic analyses highlights habitat patchiness and larval dispersal as determinants of connectivity in coastal fish species
  • 2022
  • In: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X. ; 31:9, s. 2562-2577
  • Journal article (peer-reviewed)abstract
    • Gene flow shapes spatial genetic structure and the potential for local adaptation. Among marine animals with non-migratory adults, the presence or absence of a pelagic larval stage is thought to be a key determinant in shaping gene flow and the genetic structure of populations. In addition, the spatial distribution of suitable habitats is expected to influence the distribution of biological populations and their connectivity patterns. We used whole genome sequencing to study demographic history and reduced representation (ddRAD) sequencing data to analyze spatial genetic structure in broadnosed pipefish (Syngnathus typhle). Its main habitat is eelgrass beds, which are patchily distributed along the study area in southern Norway. Demographic connectivity among populations was inferred from long-term (~30 year) population counts that uncovered a rapid decline in spatial correlations in abundance with distance as short as ~2 km. These findings were contrasted with data for two other fish species that have a pelagic larval stage (corkwing wrasse, Symphodus melops; black goby, Gobius niger). For these latter species, we found wider spatial scales of connectivity and weaker genetic isolation-by-distance patterns, except where both species experienced a strong barrier to gene flow, seemingly due to lack of suitable habitat. Our findings verify expectations that a fragmented habitat and absence of a pelagic larval stage promote genetic structure, while presence of a pelagic larvae stage increases demographic connectivity and gene flow, except perhaps over extensive habitat gaps.
  •  
13.
  • Nordlund, Lina Mtwana, et al. (author)
  • One hundred priority questions for advancing seagrass conservation in Europe
  • 2024
  • In: PLANTS PEOPLE PLANET. - 2572-2611.
  • Journal article (peer-reviewed)abstract
    • Societal Impact StatementSeagrass ecosystems are of fundamental importance to our planet and wellbeing. Seagrasses are marine flowering plants, which engineer ecosystems that provide a multitude of ecosystem services, for example, blue foods and carbon sequestration. Seagrass ecosystems have largely been degraded across much of their global range. There is now increasing interest in the conservation and restoration of these systems, particularly in the context of the climate emergency and the biodiversity crisis. The collation of 100 questions from experts across Europe could, if answered, improve our ability to conserve and restore these systems by facilitating a fundamental shift in the success of such work.SummarySeagrass meadows provide numerous ecosystem services including biodiversity, coastal protection, and carbon sequestration. In Europe, seagrasses can be found in shallow sheltered waters along coastlines, in estuaries & lagoons, and around islands, but their distribution has declined. Factors such as poor water quality, coastal modification, mechanical damage, overfishing, land-sea interactions, climate change and disease have reduced the coverage of Europe's seagrasses necessitating their recovery. Research, monitoring and conservation efforts on seagrass ecosystems in Europe are mostly uncoordinated and biased towards certain species and regions, resulting in inadequate delivery of critical information for their management. Here, we aim to identify the 100 priority questions, that if addressed would strongly advance seagrass monitoring, research and conservation in Europe. Using a Delphi method, researchers, practitioners, and policymakers with seagrass experience from across Europe and with diverse seagrass expertise participated in the process that involved the formulation of research questions, a voting process and an online workshop to identify the final list of the 100 questions. The final list of questions covers areas across nine themes: Biodiversity & Ecology; Ecosystem services; Blue carbon; Fishery support; Drivers, Threats, Resilience & Response; Monitoring & Assessment; Conservation & Restoration; Governance, Policy & Management; and Communication. Answering these questions will fill current knowledge gaps and place European seagrass onto a positive trajectory of recovery. Seagrass ecosystems are of fundamental importance to our planet and wellbeing. Seagrasses are marine flowering plants which engineer ecosystems that provide a multitude of ecosystem services, for example, blue foods and carbon sequestration. Seagrass ecosystems have largely been degraded across much of their global range. There is now increasing interest in the conservation and restoration of these systems, particularly in the context of the climate emergency and the biodiversity crisis. The collation of 100 questions from experts across Europe could, if answered, improve our ability to conserve and restore these systems by facilitating a fundamental shift in the success of such work. image
  •  
14.
  •  
15.
  • Riginos, Cynthia, 1971, et al. (author)
  • Comparative landscape genomics has arrived with a splash
  • 2023
  • In: Molecular Ecology. - 0962-1083 .- 1365-294X. ; 32:24, s. 6725-6728
  • Journal article (peer-reviewed)abstract
    • Comparative methods are central for understanding the distribution of biodiversity. Assessing spatial variation of multiple species can identify biodiversity drivers across landscapes, including on the genetic level. Molecular ecology approaches have expanded in spatial precision, from phylogeography to landscape genetics, as have molecular tools that now allow genome-scale inferences for virtually any organism. These welcome increases in genomic data richness, however, have not been matched by growth in the multispecies dimension, and empirical studies continue to focus predominantly on single species. In this issue of Molecular Ecology, Zbinden et al. (Molecular Ecology, 2022, 32) present a landmark achievement for comparative landscape genomics, surveying an impressive 31 species of fishes, sampled from 75 locations in the White River Basin and genotyping each species for thousands of SNPs. Zbinden et al. (Molecular Ecology, 2022, 32) draw upon the statistical tools of landscape genetics to comprehensively interrogate four hypotheses—that populations of multiple freshwater fish species are isolated by river distance, barriers to dispersal, stream hierarchy or environment. Stream hierarchy overwhelmingly predicts population structure within co-distributed fish species pointing to commonalities among species at the large landscape scale (100s of km). The tight alignment between intraspecific genetic spatial structure and stream hierarchies, moreover, provides clear validation for conservation and fisheries management to use watershed divisions as distinct management units.
  •  
16.
  • Ruocco, Miriam, et al. (author)
  • 2b-RAD Genotyping of the Seagrass Cymodocea nodosa Along a Latitudinal Cline Identifies Candidate Genes for Environmental Adaptation
  • 2022
  • In: Frontiers in Genetics. - : Frontiers Media SA. - 1664-8021. ; 13
  • Journal article (peer-reviewed)abstract
    • Plant populations distributed along broad latitudinal gradients often show patterns of clinal variation in genotype and phenotype. Differences in photoperiod and temperature cues across latitudes influence major phenological events, such as timing of flowering or seed dormancy. Here, we used an array of 4,941 SNPs derived from 2b-RAD genotyping to characterize population differentiation and levels of genetic and genotypic diversity of three populations of the seagrass Cymodocea nodosa along a latitudinal gradient extending across the Atlantic-Mediterranean boundary (i.e., Gran Canaria—Canary Islands, Faro—Portugal, and Ebro Delta—Spain). Our main goal was to search for potential outlier loci that could underlie adaptive differentiation of populations across the latitudinal distribution of the species. We hypothesized that such polymorphisms could be related to variation in photoperiod-temperature regime occurring across latitudes. The three populations were clearly differentiated and exhibited diverse levels of clonality and genetic diversity. Cymodocea nodosa from the Mediterranean displayed the highest genotypic richness, while the Portuguese population had the highest clonality values. Gran Canaria exhibited the lowest genetic diversity (as observed heterozygosity). Nine SNPs were reliably identified as outliers across the three sites by two different methods (i.e., BayeScan and pcadapt), and three SNPs could be associated to specific protein-coding genes by screening available C. nodosa transcriptomes. Two SNPs-carrying contigs encoded for transcription factors, while the other one encoded for an enzyme specifically involved in the regulation of flowering time, namely Lysine-specific histone demethylase 1 homolog 2. When analyzing biological processes enriched within the whole dataset of outlier SNPs identified by at least one method, “regulation of transcription” and “signalling” were among the most represented. Our results highlight the fundamental importance signal integration and gene-regulatory networks, as well as epigenetic regulation via DNA (de)methylation, could have for enabling adaptation of seagrass populations along environmental gradients.
  •  
17.
  • Ruocco, Miriam, et al. (author)
  • m6A RNA Methylation in Marine Plants: First Insights and Relevance for Biological Rhythms
  • 2020
  • In: International Journal of Molecular Sciences. - : MDPI AG. - 1422-0067. ; 21:20
  • Journal article (peer-reviewed)abstract
    • Circadian regulations are essential for enabling organisms to synchronize physiology with environmental light-dark cycles. Post-transcriptional RNA modifications still represent an understudied level of gene expression regulation in plants, although they could play crucial roles in environmental adaptation. N6-methyl-adenosine (m6A) is the most prevalent mRNA modification, established by “writer” and “eraser” proteins. It influences the clockwork in several taxa, but only few studies have been conducted in plants and none in marine plants. Here, we provided a first inventory of m6A-related genes in seagrasses and investigated daily changes in the global RNA methylation and transcript levels of writers and erasers in Cymodocea nodosa and Zostera marina. Both species showed methylation peaks during the dark period under the same photoperiod, despite exhibiting asynchronous changes in the m6A profile and related gene expression during a 24-h cycle. At contrasting latitudes, Z. marina populations displayed overlapping daily patterns of the m6A level and related gene expression. The observed rhythms are characteristic for each species and similar in populations of the same species with different photoperiods, suggesting the existence of an endogenous circadian control. Globally, our results indicate that m6A RNA methylation could widely contribute to circadian regulation in seagrasses, potentially affecting the photo-biological behaviour of these plants.
  •  
18.
  • Yu, Lei, et al. (author)
  • Ocean current patterns drive the worldwide colonization of eelgrass (Zostera marina)
  • 2023
  • In: Nature Plants. - 2055-026X .- 2055-0278. ; 9:8, s. 1207-1220
  • Journal article (peer-reviewed)abstract
    • Currents are unique drivers of oceanic phylogeography and thus determine the distribution of marine coastal species, along with past glaciations and sea-level changes. Here we reconstruct the worldwide colonization history of eelgrass (Zostera marina L.), the most widely distributed marine flowering plant or seagrass from its origin in the Northwest Pacific, based on nuclear and chloroplast genomes. We identified two divergent Pacific clades with evidence for admixture along the East Pacific coast. Two west-to-east (trans-Pacific) colonization events support the key role of the North Pacific Current. Time-calibrated nuclear and chloroplast phylogenies yielded concordant estimates of the arrival of Z. marina in the Atlantic through the Canadian Arctic, suggesting that eelgrass-based ecosystems, hotspots of biodiversity and carbon sequestration, have only been present there for ~243ky (thousand years). Mediterranean populations were founded ~44kya, while extant distributions along western and eastern Atlantic shores were founded at the end of the Last Glacial Maximum (~19kya), with at least one major refuge being the North Carolina region. The recent colonization and five- to sevenfold lower genomic diversity of the Atlantic compared to the Pacific populations raises concern and opportunity about how Atlantic eelgrass might respond to rapidly warming coastal oceans.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-18 of 18
Type of publication
journal article (18)
Type of content
peer-reviewed (17)
other academic/artistic (1)
Author/Editor
Jahnke, Marlene (18)
Jonsson, Per R., 195 ... (6)
Moksnes, Per-Olav, 1 ... (6)
Rossi, Francesca (3)
Johannesson, Kerstin ... (3)
Silva, Joao (2)
show more...
Pereyra, Ricardo T., ... (2)
André, Carl, 1958 (2)
Nilsson Jacobi, Mart ... (2)
Rafajlović, Marina, ... (2)
Faust, Ellika (2)
Pavia, Henrik, 1964 (1)
Blomberg, Anders, 19 ... (1)
Infantes, Eduardo (1)
Kvarnemo, Charlotta, ... (1)
Larsson, Josefine (1)
Nordlund, Lina M. (1)
Eriksson, Susanne P. ... (1)
Gullström, Martin (1)
Nordlund, Lina Mtwan ... (1)
Eklöf, Johan, 1978 (1)
Havenhand, Jonathan ... (1)
Roth, Olivia (1)
Jentoft, Sissel (1)
Zane, L. (1)
Asplund, Maria. E., ... (1)
Knutsen, Halvor (1)
Jorde, Per Erik (1)
Santos, Isaac R. (1)
Gustafsson, Camilla (1)
Green, Leon (1)
Harding, Karin C., 1 ... (1)
Dupont, Samuel, 1971 (1)
Boström, Christoffer (1)
Gagnon, Karine (1)
De Wit, Pierre, 1978 (1)
Thormar, Jonas (1)
Loo, Lars-Ove, 1954 (1)
Hoelzel, A. Rus (1)
Thorndyke, Michael C ... (1)
Yu, Lei (1)
Pilot, Małgorzata (1)
Billman, Maja (1)
Eisen, Jonathan A. (1)
Jenkins, Jerry (1)
Bauer, Diane (1)
Grimwood, Jane (1)
Schmutz, Jeremy (1)
Van de Peer, Yves (1)
Piñeiro-Juncal, Nere ... (1)
show less...
University
University of Gothenburg (18)
Stockholm University (2)
Chalmers University of Technology (2)
Uppsala University (1)
Södertörn University (1)
Language
English (18)
Research subject (UKÄ/SCB)
Natural sciences (18)
Agricultural Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view