SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jahromi H. R. T.) "

Sökning: WFRF:(Jahromi H. R. T.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Wright, Gillian, et al. (författare)
  • The Mid-infrared Instrument for JWST and Its In-flight Performance
  • 2023
  • Ingår i: Publications of the Astronomical Society of the Pacific. - 0004-6280 .- 1538-3873. ; 135:1046
  • Tidskriftsartikel (refereegranskat)abstract
    • The Mid-Infrared Instrument (MIRI) extends the reach of the James Webb Space Telescope (JWST) to 28.5 μm. It provides subarcsecond-resolution imaging, high sensitivity coronagraphy, and spectroscopy at resolutions of λ/Δλ ∼ 100-3500, with the high-resolution mode employing an integral field unit to provide spatial data cubes. The resulting broad suite of capabilities will enable huge advances in studies over this wavelength range. This overview describes the history of acquiring this capability for JWST. It discusses the basic attributes of the instrument optics, the detector arrays, and the cryocooler that keeps everything at approximately 7 K. It gives a short description of the data pipeline and of the instrument performance demonstrated during JWST commissioning. The bottom line is that the telescope and MIRI are both operating to the standards set by pre-launch predictions, and all of the MIRI capabilities are operating at, or even a bit better than, the level that had been expected. The paper is also designed to act as a roadmap to more detailed papers on different aspects of MIRI.
  •  
4.
  •  
5.
  • Nyström, Magda, 1984, et al. (författare)
  • Extracting extensional properties through excess pressure drop estimation in axisymmetric contraction and expansion flows for constant shear viscosity, extension strain-hardening fluids
  • 2016
  • Ingår i: Rheologica Acta. - : Springer Science and Business Media LLC. - 1435-1528 .- 0035-4511. ; 55:5, s. 373-396
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, hyperbolic contraction-expansion flow (HCF) devices have been investigated with the specific aim of devising new experimental measuring systems for extensional rheological properties. To this end, a hyperbolic contraction-expansion configuration has been designed to minimize the influence of shear in the flow. Experiments have been conducted using well-characterized model fluids, alongside simulations using a viscoelastic White-Metzner/FENE-CR model and finite element/finite volume analysis. Here, the application of appropriate rheological models to reproduce quantitative pressure drop predictions for constant shear viscosity fluids has been investigated, in order to extract the relevant extensional properties for the various test fluids in question. Accordingly, experimental evaluation of the hyperbolic contraction-expansion configuration has shown rising corrected pressure drops with increasing elastic behaviour (D e=0 similar to 16), evidence which has been corroborated through numerical prediction. Moreover, theoretical to predicted solution correspondence has been established between extensional viscosity and first normal stress difference. This leads to a practical means to measure extensional viscosity for elastic fluids, obtained through the derived pressure drop data in these HCF devices.
  •  
6.
  • Nyström, Magda, 1984, et al. (författare)
  • Hyperbolic contraction measuring systems for extensional flow
  • 2017
  • Ingår i: Mechanics of Time-Dependent Materials. - : Springer Science and Business Media LLC. - 1385-2000 .- 1573-2738. ; 21:3, s. 455-479
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper an experimental method for extensional measurements on medium viscosity fluids in contraction flow is evaluated through numerical simulations and experimental measurements. This measuring technique measures the pressure drop over a hyperbolic contraction, caused by fluid extension and fluid shear, where the extensional component is assumed to dominate. The present evaluative work advances our previous studies on this experimental method by introducing several contraction ratios and addressing different constitutive models of varying shear and extensional response. The constitutive models included are those of the constant viscosity Oldroyd-B and FENE-CR models, and the shear-thinning LPTT model. Examining the results, the impact of shear and first normal stress difference on the measured pressure drop are studied through numerical pressure drop predictions. In addition, stream function patterns are investigated to detect vortex development and influence of contraction ratio. The numerical predictions are further related to experimental measurements for the flow through a 15:1 contraction ratio with three different test fluids. The measured pressure drops are observed to exhibit the same trends as predicted in the numerical simulations, offering close correlation and tight predictive windows for experimental data capture. This result has demonstrated that the hyperbolic contraction flow is well able to detect such elastic fluid properties and that this is matched by numerical predictions in evaluation of their flow response. The hyperbolical contraction flow technique is commended for its distinct benefits: it is straightforward and simple to perform, the Hencky strain can be set by changing contraction ratio, non-homogeneous fluids can be tested, and one can directly determine the degree of elastic fluid behaviour. Based on matching of viscometric extensional viscosity response for FENE-CR and LPTT models, a decline is predicted in pressure drop for the shear-thinning LPTT model. This would indicate a modest impact of shear in the flow since such a pressure drop decline is relatively small. It is particularly noteworthy that the increase in pressure drop gathered from the experimental measurements is relatively high despite the low Deborah number range explored.
  •  
7.
  • Nyström, Magda, 1984, et al. (författare)
  • Numerical simulations of Boger fluids through different contraction configurations for the development of a measuring system for extensional viscosity
  • 2012
  • Ingår i: Rheologica Acta. - : Springer Science and Business Media LLC. - 1435-1528 .- 0035-4511. ; 51:8, s. 713-727
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper reports the flow behaviour of Newtonian and Boger fluids through various axisymmetric contraction configurations by means of numerical predictions. A principal aim has been to evaluate the geometrical design choice of the hyperbolic contraction flow. The FENE-CR model has been used to reflect the behaviour of Boger fluids, with constant shear viscosity, finite (yet large) extensional viscosity and less than quadratic first normal stress difference. Numerical calculations have been performed on six different contraction configurations to evaluate an optimized geometry for measuring extensional viscosity in uniaxial extensional flow. The influence of a sharp or rounded recess-corner on the nozzle has also been investigated. Few commercial measuring systems are currently available for measurement of the extensional rheology of medium-viscosity fluids, such as foods and other biological systems. In this context, a technique based on the hyperbolic contraction flow would be a suitable alternative. The pressure drop, the velocity field, the first normal stress difference and the strain rate across the geometry have each been evaluated for Newtonian and Boger fluids. This numerical study has shown that the hyperbolic configuration is superior to the other geometry choices in achieving a constant extension rate. In this hyperbolic configuration, no vortices are formed, the measuring range is broader and the strain rate is constant throughout the geometric domain, unlike in the alternative configurations tested. The difference between sharp and rounded recess-corner configurations proved to be negligible and a rise in excess pressure drop (epd) for increasing deformation rates has been observed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy