SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jal E.) "

Sökning: WFRF:(Jal E.)

  • Resultat 1-19 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Reid, A. H., et al. (författare)
  • Beyond a phenomenological description of magnetostriction
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetostriction, the strain induced by a change in magnetization, is a universal effect in magnetic materials. Owing to the difficulty in unraveling its microscopic origin, it has been largely treated phenomenologically. Here, we show how the source of magnetostriction-the underlying magnetoelastic stress-can be separated in the time domain, opening the door for an atomistic understanding. X-ray and electron diffraction are used to separate the subpicosecond spin and lattice responses of FePt nanoparticles. Following excitation with a 50-fs laser pulse, time-resolved X-ray diffraction demonstrates that magnetic order is lost within the nanoparticles with a time constant of 146 fs. Ultrafast electron diffraction reveals that this demagnetization is followed by an anisotropic, three-dimensional lattice motion. Analysis of the size, speed, and symmetry of the lattice motion, together with ab initio calculations accounting for the stresses due to electrons and phonons, allow us to reveal the magnetoelastic stress generated by demagnetization.
  •  
2.
  •  
3.
  • Gray, A. X., et al. (författare)
  • Ultrafast terahertz field control of electronic and structural interactions in vanadium dioxide
  • 2018
  • Ingår i: Physical Review B. - : AMER PHYSICAL SOC. - 2469-9950 .- 2469-9969. ; 98:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Vanadium dioxide (VO2), an archetypal correlated-electron material, undergoes an insulator-metal transition near room temperature that exhibits electron-correlation-driven and structurally driven physics. Using ultrafast temperature- and fluence-dependent optical spectroscopy and x-ray scattering, we show that multiple interrelated electronic and structural processes in the nonequilibrium dynamics in VO2 can be disentangled in the time domain. Specifically, following intense subpicosecond terahertz (THz) electric-field excitation, a partial collapse of the insulating gap occurs within the first picosecond. At temperatures sufficiently close to the transition temperature and for THz peak fields above a threshold of approximately 1 MV/cm, this electronic reconfiguration initiates a change in lattice symmetry taking place on a slower timescale. We identify the kinetic energy increase of electrons tunneling in the strong electric field as the driving force, illustrating a promising method to control electronic and structural interactions in correlated materials on an ultrafast timescale.
  •  
4.
  • Iacocca, Ezio, 1986, et al. (författare)
  • Spin-current-mediated rapid magnon localisation and coalescence after ultrafast optical pumping of ferrimagnetic alloys
  • 2019
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Sub-picosecond magnetisation manipulation via femtosecond optical pumping has attracted wide attention ever since its original discovery in 1996. However, the spatial evolution of the magnetisation is not yet well understood, in part due to the difficulty in experimentally probing such rapid dynamics. Here, we find evidence of a universal rapid magnetic order recovery in ferrimagnets with perpendicular magnetic anisotropy via nonlinear magnon processes. We identify magnon localisation and coalescence processes, whereby localised magnetic textures nucleate and subsequently interact and grow in accordance with a power law formalism. A hydrodynamic representation of the numerical simulations indicates that the appearance of noncollinear magnetisation via optical pumping establishes exchange-mediated spin currents with an equivalent 100% spin polarised charge current density of 10 7 A cm −2 . Such large spin currents precipitate rapid recovery of magnetic order after optical pumping. The magnon processes discussed here provide new insights for the stabilization of desired meta-stable states.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Zhou Hagström, Nanna, 1993-, et al. (författare)
  • Megahertz-rate ultrafast X-ray scattering and holographic imaging at the European XFEL
  • 2022
  • Ingår i: Journal of Synchrotron Radiation. - : International Union of Crystallography (IUCr). - 0909-0495 .- 1600-5775. ; 29, s. 1454-1464
  • Tidskriftsartikel (refereegranskat)abstract
    • The advent of X-ray free-electron lasers (XFELs) has revolutionized fundamental science, from atomic to condensed matter physics, from chemistry to biology, giving researchers access to X-rays with unprecedented brightness, coherence and pulse duration. All XFEL facilities built until recently provided X-ray pulses at a relatively low repetition rate, with limited data statistics. Here, results from the first megahertz-repetition-rate X-ray scattering experiments at the Spectroscopy and Coherent Scattering (SCS) instrument of the European XFEL are presented. The experimental capabilities that the SCS instrument offers, resulting from the operation at megahertz repetition rates and the availability of the novel DSSC 2D imaging detector, are illustrated. Time-resolved magnetic X-ray scattering and holographic imaging experiments in solid state samples were chosen as representative, providing an ideal test-bed for operation at megahertz rates. Our results are relevant and applicable to any other non-destructive XFEL experiments in the soft X-ray range.
  •  
9.
  •  
10.
  • Chen, Z., et al. (författare)
  • Ultrafast Self-Induced X-Ray Transparency and Loss of Magnetic Diffraction
  • 2018
  • Ingår i: Physical Review Letters. - : AMER PHYSICAL SOC. - 0031-9007 .- 1079-7114. ; 121:13
  • Tidskriftsartikel (refereegranskat)abstract
    • Using ultrafast similar or equal to 2.5 fs and similar or equal to 25 fs self-amplified spontaneous emission pulses of increasing intensity and a novel experimental scheme, we report the concurrent increase of stimulated emission in the forward direction and loss of out-of-beam diffraction contrast for a Co/Pd multilayer sample. The experimental results are quantitatively accounted for by a statistical description of the pulses in conjunction with the optical Bloch equations. The dependence of the stimulated sample response on the incident intensity, coherence time, and energy jitter of the employed pulses reveals the importance of increased control of x-ray free electron laser radiation.
  •  
11.
  • Henighan, T., et al. (författare)
  • Generation mechanism of terahertz coherent acoustic phonons in Fe
  • 2016
  • Ingår i: PHYSICAL REVIEW B. - 2469-9950. ; 93:22
  • Tidskriftsartikel (refereegranskat)abstract
    • We use femtosecond time-resolved hard x-ray scattering to detect coherent acoustic phonons generated during ultrafast laser excitation of ferromagnetic bcc Fe films grown on MgO(001). We observe the coherent longitudinal-acoustic phonons as a function of wave vector through analysis of the temporal oscillations in the x-ray scattering signal. The width of the extracted strain wave front associated with this coherent motion is similar to 100 fs. An effective electronic Gruneisen parameter is extracted within a two-temperature model. However, ab initio calculations show that the phonons are nonthermal on the time scale of the experiment, which calls into question the validity of extracting physical constants by fitting such a two-temperature model.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  • Turenne, Diego, et al. (författare)
  • Nonequilibrium sub–10 nm spin-wave soliton formation in FePt nanoparticles
  • 2022
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 8:13
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetic nanoparticles such as FePt in the L10 phase are the bedrock of our current data storage technology. As the grains become smaller to keep up with technological demands, the superparamagnetic limit calls for materials with higher magnetocrystalline anisotropy. This, in turn, reduces the magnetic exchange length to just a few nanometers, enabling magnetic structures to be induced within the nanoparticles. Here, we describe the existence of spin-wave solitons, dynamic localized bound states of spin-wave excitations, in FePt nanoparticles. We show with time-resolved x-ray diffraction and micromagnetic modeling that spin-wave solitons of sub–10 nm sizes form out of the demagnetized state following femtosecond laser excitation. The measured soliton spin precession frequency of 0.1 THz positions this system as a platform to develop novel miniature devices. 
  •  
18.
  • Zhou Hagström, Nanna, 1993-, et al. (författare)
  • Megahertz-rate Ultrafast X-ray Scattering and Holographic Imaging at the European XFEL
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The advent of X-ray free-electron lasers (XFELs) has revolutionized fundamental science, from atomic to condensed matter physics, from chemistry to biology, giving researchers access to X-rays with unprecedented brightness, coherence, and pulse duration. All XFEL facilities built until recently provided X-ray pulses at a relatively low repetition rate, with limited data statistics. Here, we present the results from the first megahertz repetition rate X-ray scattering experiments at the Spectroscopy and Coherent Scattering (SCS) instrument of the European XFEL. We illustrate the experimental capabilities that the SCS instrument offers, resulting from the operation at MHz repetition rates and the availability of the novel DSSC 2D imaging detector. Time-resolved magnetic X-ray scattering and holographic imaging experiments in solid state samples were chosen as representative examples, providing an ideal test-bed for operation at megahertz rates. Nevertheless, our results are relevant and applicable to any other non-destructive XFEL experiments in the soft X-ray range. 
  •  
19.
  • Zhou Hagström, Nanna, 1993-, et al. (författare)
  • Symmetry-dependent ultrafast manipulation of nanoscale magnetic domains
  • 2022
  • Ingår i: Physical Review B. - : American Physical Society. - 2469-9950 .- 2469-9969. ; 106:22
  • Tidskriftsartikel (refereegranskat)abstract
    • Femtosecond optical pumping of magnetic materials has been used to achieve ultrafast switching and recently to nucleate symmetry-broken magnetic states. However, when the magnetic order parameter already presents a broken-symmetry state, such as a domain pattern, the dynamics are poorly understood and consensus remains elusive. Here, we resolve the controversies in the literature by studying the ultrafast response of magnetic domain patterns with varying degrees of translation symmetry with ultrafast x-ray resonant scattering. A data analysis technique is introduced to disentangle the isotropic and anisotropic components of the x-ray scattering. We find that the scattered intensity exhibits a radial shift restricted to the isotropic component, indicating that the far-from-equilibrium magnetization dynamics are intrinsically related to the spatial features of the domain pattern. Our results suggest alternative pathways for the spatiotemporal manipulation of magnetism via far-from-equilibrium dynamics and by carefully tuning the ground-state magnetic textures.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-19 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy