SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jammet M.) "

Sökning: WFRF:(Jammet M.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Vonk, J. E., et al. (författare)
  • Reviews and syntheses : Effects of permafrost thaw on Arctic aquatic ecosystems
  • 2015
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 12:23, s. 7129-7167
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic is a water-rich region, with freshwater systems covering about 16% of the northern permafrost landscape. Permafrost thaw creates new freshwater ecosystems, while at the same time modifying the existing lakes, streams, and rivers that are impacted by thaw. Here, we describe the current state of knowledge regarding how permafrost thaw affects lentic (still) and lotic (moving) systems, exploring the effects of both thermokarst (thawing and collapse of ice-rich permafrost) and deepening of the active layer (the surface soil layer that thaws and refreezes each year). Within thermokarst, we further differentiate between the effects of thermokarst in lowland areas vs. that on hillslopes. For almost all of the processes that we explore, the effects of thaw vary regionally, and between lake and stream systems. Much of this regional variation is caused by differences in ground ice content, topography, soil type, and permafrost coverage. Together, these modifying factors determine (i) the degree to which permafrost thaw manifests as thermokarst, (ii) whether thermokarst leads to slumping or the formation of thermokarst lakes, and (iii) the manner in which constituent delivery to freshwater systems is altered by thaw. Differences in thaw-enabled constituent delivery can be considerable, with these modifying factors determining, for example, the balance between delivery of particulate vs. dissolved constituents, and inorganic vs. organic materials. Changes in the composition of thaw-impacted waters, coupled with changes in lake morphology, can strongly affect the physical and optical properties of thermokarst lakes. The ecology of thaw-impacted lakes and streams is also likely to change; these systems have unique microbiological communities, and show differences in respiration, primary production, and food web structure that are largely driven by differences in sediment, dissolved organic matter, and nutrient delivery. The degree to which thaw enables the delivery of dissolved vs. particulate organic matter, coupled with the composition of that organic matter and the morphology and stratification characteristics of recipient systems will play an important role in determining the balance between the release of organic matter as greenhouse gases (CO2 and CH4), its burial in sediments, and its loss downstream. The magnitude of thaw impacts on northern aquatic ecosystems is increasing, as is the prevalence of thaw-impacted lakes and streams. There is therefore an urgent need to quantify how permafrost thaw is affecting aquatic ecosystems across diverse Arctic landscapes, and the implications of this change for further climate warming.
  •  
2.
  • Dengel, S., et al. (författare)
  • Testing the applicability of neural networks as a gap-filling method using CH4 flux data from high latitude wetlands
  • 2013
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4189. ; 10, s. 8185-8200
  • Tidskriftsartikel (refereegranskat)abstract
    • Since the advancement in CH4 gas analyser technology and its applicability to eddy covariance flux measurements, monitoring of CH4 emissions is becoming more widespread. In order to accurately determine the greenhouse gas balance, high quality gap-free data is required. Currently there is still no consensus on CH4 gap-filling methods, and methods applied are still study-dependent and often carried out on low resolution, daily data. In the current study, we applied artificial neural networks to six distinctively different CH4 time series from high latitudes, explain the method and test its functionality. We discuss the applicability of neural networks in CH4 flux studies, the advantages and disadvantages of this method, and what information we were able to extract from such models. Three different approaches were tested by including drivers such as air and soil temperature, barometric air pressure, solar radiation, wind direction (indicator of source location) and in addition the lagged effect of water table depth and precipitation. In keeping with the principle of parsimony, we included up to five of these variables traditionally measured at CH4 flux measurement sites. Fuzzy sets were included representing the seasonal change and time of day. High Pearson correlation coefficients (r) of up to 0.97 achieved in the final analysis are indicative for the high performance of neural networks and their applicability as a gap-filling method for CH4 flux data time series. This novel approach which we show to be appropriate for CH4 fluxes is a step towards standardising CH4 gap-filling protocols.
  •  
3.
  • Jansen, Joachim, et al. (författare)
  • Climate‐Sensitive Controls on Large Spring Emissions of CH4 and CO2 From Northern Lakes
  • 2019
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - 2169-8953 .- 2169-8961. ; 124:7, s. 2379-2399
  • Tidskriftsartikel (refereegranskat)abstract
    • Northern lakes are important sources of the climate forcing trace gases methane (CH4) and carbon dioxide (CO2). A substantial portion of lakes' annual emissions can take place immediately after ice melt in spring. The drivers of these fluxes are neither well constrained nor fully understood. We present a detailed carbon gas budget for three subarctic lakes, using 6 years of eddy covariance and 9 years of manual flux measurements. We combine measurements of temperature, dissolved oxygen, and CH4 stable isotopologues to quantify functional relationships between carbon gas production and conversion, energy inputs, and the redox regime. Spring emissions were regulated by the availability of oxygen in winter, rather than temperature as during ice‐free conditions. Under‐ice storage increased predictably with ice‐cover duration, and CH4 accumulation rates (25 ± 2 mg CH4‐C·m−2·day−1) exceeded summer emissions (19 ± 1 mg CH4‐C·m−2·day−1). The seasonally ice‐covered lakes emitted 26–59% of the annual CH4 flux and 15–30% of the annual CO2 flux at ice‐off. Reduced spring emissions were associated with winter snowmelt events, which can transport water downstream and oxygenate the water column. Stable isotopes indicate that 64–96% of accumulated CH4 escaped oxidation, implying that a considerable portion of the dissolved gases produced over winter may evade to the atmosphere.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy