SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jansen Marcel A.K.) "

Sökning: WFRF:(Jansen Marcel A.K.)

  • Resultat 1-13 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barnes, Paul W., et al. (författare)
  • Ozone depletion, ultraviolet radiation, climate change and prospects for a sustainable future
  • 2019
  • Ingår i: Nature Sustainability. - : Springer Science and Business Media LLC. - 2398-9629. ; 2:7, s. 569-579
  • Forskningsöversikt (refereegranskat)abstract
    • © 2019, Springer Nature Limited. Changes in stratospheric ozone and climate over the past 40-plus years have altered the solar ultraviolet (UV) radiation conditions at the Earth’s surface. Ozone depletion has also contributed to climate change across the Southern Hemisphere. These changes are interacting in complex ways to affect human health, food and water security, and ecosystem services. Many adverse effects of high UV exposure have been avoided thanks to the Montreal Protocol with its Amendments and Adjustments, which have effectively controlled the production and use of ozone-depleting substances. This international treaty has also played an important role in mitigating climate change. Climate change is modifying UV exposure and affecting how people and ecosystems respond to UV; these effects will become more pronounced in the future. The interactions between stratospheric ozone, climate and UV radiation will therefore shift over time; however, the Montreal Protocol will continue to have far-reaching benefits for human well-being and environmental sustainability.
  •  
2.
  • Castro Alves, Victor, 1986-, et al. (författare)
  • Integration of non-target metabolomics and sensory analysis unravels vegetable plant metabolite signatures associated with sensory quality : A case study using dill (Anethum graveolens)
  • 2021
  • Ingår i: Food Chemistry. - : Elsevier. - 0308-8146 .- 1873-7072. ; 344
  • Tidskriftsartikel (refereegranskat)abstract
    • Using dill (Anethum graveolens L.) as a model herb, we revealnovel associations between metabolite profile and sensory quality, by integrating non-target metabolomics with sensory data. Low night temperatures and exposure to UV-enriched light was used to modulate plant metabolism, thereby improving sensory quality. Plant age is a crucial factor associated with accumulation of dill ether and α-phellandrene, volatile compounds associated with dill flavour. However, sensory analysis showed that neither of these compounds has any strong association with dill taste. Rather, amino acids alanine, phenylalanine, glutamic acid, valine, and leucine increased in samples exposed to eustress and were positively associated with dill and sour taste. Increases in amino acids and organic acids changed the taste from lemon/grass to a more bitter/pungent dill-related taste. Our approach reveals a novel approach to establish links between effects of eustressors on sensory quality, and may be applicable to a broad range of crops.
  •  
3.
  • Comont, David, et al. (författare)
  • UV responses of Lolium perenne raised along a latitudinal gradient across Europe : a filtration study
  • 2012
  • Ingår i: Physiologia Plantarum. - : Wiley-Blackwell. - 0031-9317 .- 1399-3054. ; 145, s. 604-618
  • Tidskriftsartikel (refereegranskat)abstract
    • Lolium perenne (cv. AberDart) was grown at 14 locations along a latitudinal gradient across Europe (37–68◦N) to study the impact of ultraviolet radiation (UV) and climate on aboveground growth and foliar UV-B absorbing compounds. At each location, plants were grown outdoors for 5 weeks in a replicated UV-B filtration experiment consisting of open, UV-B transparent (cellulose diacetate) and UV-B opaque (polyester) environments. Fourier transform-infrared spectroscopy was used to compare plantmetabolite profiles in relation to treatment and location. UV radiation and climatic parameters were determined for each location from online sources and the data were assessed using a combination of ANOVA and multiple regression analyses. Most of the variation in growth between the locations was attributable to the combination of climatic parameters, with minimum temperature identified as an important growth constraint. However, no single environmental parameter could consistently account for the variability in plant growth. Concentrations of foliar UV-B absorbing compounds showed a positive trend with solar UV across the latitudinal gradient; however, this relationship was not consistent in all treatments. The most striking experimental outcome from this study was the effect of presence or absence of filtration frames onUV-absorbing compounds. Overall, the study demonstrates the value of an European approach in studying the impacts of natural UV across a large latitudinal gradient. We have shown the feasibility of coordinated UV filtration at multiple sites but have also highlighted the need for open controls and careful interpretation of plant responses.
  •  
4.
  • Hideg, Éva, et al. (författare)
  • UV-B exposure, ROS, and stress : inseparable companions or loosely linked associates?
  • 2013
  • Ingår i: Trends in Plant Science. - : Cell Press. - 1360-1385 .- 1878-4372. ; 18:2, s. 107-115
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultraviolet-B (UV-B) radiation has long been perceived as a stressor. However, a conceptual U-turn has taken place, and UV-B damage is now considered rare. We question whether UV-stress and UV-B-induced reactive oxygen species (ROS) are still relevant concepts, and if ROS-mediated signaling contributes to UV-B acclimation. Measurements of antioxidants and of antioxidant genes show that both low and high UV-B doses alter ROS metabolism. Yet, there is no evidence that ROS control gene expression under low UV-B. Instead, expression of antioxidant genes is linked to the UV RESISTANCE LOCUS 8 pathway. We hypothesize that low UVB doses cause ‘eustress’ (good stress) and that stimulispecific signaling pathways pre-dispose plants to a state of low alert that includes activation of antioxidant defenses.
  •  
5.
  • Jansen, Marcel A. K., et al. (författare)
  • Environmental plastics in the context of UV radiation, climate change, and the Montreal Protocol
  • 2024
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 30:4
  • Tidskriftsartikel (refereegranskat)abstract
    • There are close links between solar UV radiation, climate change, and plastic pollution. UV-driven weathering is a key process leading to the degradation of plastics in the environment but also the formation of potentially harmful plastic fragments such as micro- and nanoplastic particles. Estimates of the environmental persistence of plastic pollution, and the formation of fragments, will need to take in account plastic dispersal around the globe, as well as projected UV radiation levels and climate change factors.image
  •  
6.
  •  
7.
  • Jansen, Marcel A. K., et al. (författare)
  • Plastics in the environment in the context of UV radiation, climate change and the Montreal Protocol : UNEP Environmental Effects Assessment Panel, Update 2023
  • 2024
  • Ingår i: Photochemical and Photobiological Sciences. - : Springer Nature. - 1474-905X .- 1474-9092. ; 23, s. 629-650
  • Tidskriftsartikel (refereegranskat)abstract
    • This Assessment Update by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) considers the interactive effects of solar UV radiation, global warming, and other weathering factors on plastics. The Assessment illustrates the significance of solar UV radiation in decreasing the durability of plastic materials, degradation of plastic debris, formation of micro- and nanoplastic particles and accompanying leaching of potential toxic compounds. Micro- and nanoplastics have been found in all ecosystems, the atmosphere, and in humans. While the potential biological risks are not yet well-established, the widespread and increasing occurrence of plastic pollution is reason for continuing research and monitoring. Plastic debris persists after its intended life in soils, water bodies and the atmosphere as well as in living organisms. To counteract accumulation of plastics in the environment, the lifetime of novel plastics or plastic alternatives should better match the functional life of products, with eventual breakdown releasing harmless substances to the environment.
  •  
8.
  • Neugart, Susanne, et al. (författare)
  • A synchronized, large-scale field experiment using Arabidopsis thaliana reveals the significance of the UV-B photoreceptor UVR8 under natural conditions
  • 2024
  • Ingår i: Plant, Cell and Environment. - : Blackwell Publishing. - 0140-7791 .- 1365-3040.
  • Tidskriftsartikel (refereegranskat)abstract
    • This study determines the functional role of the plant ultraviolet-B radiation (UV-B) photoreceptor, UV RESISTANCE LOCUS 8 (UVR8) under natural conditions using a large-scale 'synchronized-genetic-perturbation-field-experiment'. Laboratory experiments have demonstrated a role for UVR8 in UV-B responses but do not reflect the complexity of outdoor conditions where 'genotype × environment' interactions can mask laboratory-observed responses. Arabidopsis thaliana knockout mutant, uvr8-7, and the corresponding Wassilewskija wild type, were sown outdoors on the same date at 21 locations across Europe, ranging from 39°N to 67°N latitude. Growth and climatic data were monitored until bolting. At the onset of bolting, rosette size, dry weight, and phenolics and glucosinolates were quantified. The uvr8-7 mutant developed a larger rosette and contained less kaempferol glycosides, quercetin glycosides and hydroxycinnamic acid derivatives than the wild type across all locations, demonstrating a role for UVR8 under field conditions. UV effects on rosette size and kaempferol glycoside content were UVR8 dependent, but independent of latitude. In contrast, differences between wild type and uvr8-7 in total quercetin glycosides, and the quercetin-to-kaempferol ratio decreased with increasing latitude, that is, a more variable UV response. Thus, the large-scale synchronized approach applied demonstrates a location-dependent functional role of UVR8 under natural conditions.
  •  
9.
  • Qian, Minjie, 1987-, et al. (författare)
  • Downsizing in plants—UV light induces pronounced morphological changes in the absence of stress
  • 2021
  • Ingår i: Plant Physiology. - : Oxford University Press. - 0032-0889 .- 1532-2548. ; 187:1, s. 378-395
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultraviolet (UV) light induces a stocky phenotype in many plant species. In this study, we investigate this effect with regard to specific UV wavebands (UV-A or UV-B) and the cause for this dwarfing. UV-A- or UV-B-enrichment of growth light both resulted in a smaller cucumber (Cucumis sativus L.) phenotype, exhibiting decreased stem and petiole lengths and leaf area (LA). Effects were larger in plants grown in UV-B- than in UV-A-enriched light. In plants grown in UV-A-enriched light, decreases in stem and petiole lengths were similar independent of tissue age. In the presence of UV-B radiation, stems and petioles were progressively shorter the younger the tissue. Also, plants grown under UV-A-enriched light significantly reallocated photosynthates from shoot to root and also had thicker leaves with decreased specific LA. Our data therefore imply different morphological plant regulatory mechanisms under UV-A and UV-B radiation. There was no evidence of stress in the UV-exposed plants, neither in photosynthetic parameters, total chlorophyll content, or in accumulation of damaged DNA (cyclobutane pyrimidine dimers). The abscisic acid content of the plants also was consistent with non-stress conditions. Parameters such as total leaf antioxidant activity, leaf adaxial epidermal flavonol content and foliar total UV-absorbing pigment levels revealed successful UV acclimation of the plants. Thus, the UV-induced dwarfing, which displayed different phenotypes depending on UV wavelengths, occurred in healthy cucumber plants, implying a regulatory adjustment as part of the UV acclimation processes involving UV-A and/or UV-B photoreceptors.
  •  
10.
  • Qian, Minjie, et al. (författare)
  • Supplementary UV-A and UV-B radiation differentially regulate morphology in Ocimum basilicum
  • 2023
  • Ingår i: Photochemical and Photobiological Sciences. - : Springer. - 1474-905X .- 1474-9092. ; 22:9, s. 2219-2230
  • Tidskriftsartikel (refereegranskat)abstract
    • UV-A- or UV-B-enriched growth light were given to basil plants at non-stress-inducing intensities. UV-A-enriched growth light gave rise to a sharp rise in expression of PAL and CHS genes in leaves, an effect that rapidly declined after 1-2 days of exposure. On the other hand, leaves of plants grown in UV-B-enriched light had a more stable and long-lasting increase in expression of these genes and also showed a stronger increase in leaf epidermal flavonol content. UV supplementation of growth light also led to shorter more compact plants with a stronger UV effect the younger the tissue. The effect was more prominent in plants grown under UV-B-enriched light than in those grown under UV-A. Parameters particularly affected were internode lengths, petiole lengths and stem stiffness. In fact, the bending angle of the 2nd internode was found to increase as much as 67% and 162% for plants grown in the UV-A- and UV-B-enriched treatments, respectively. The decreased stem stiffness was probably caused by both an observed smaller internode diameter and a lower specific stem weight, as well as a possible decline in lignin biosynthesis due to competition for precursor by the increased flavonoid biosynthesis. Overall, at the intensities used, UV-B wavelengths are stronger regulators of morphology, gene expression and flavonoid biosynthesis than UV-A wavelengths.
  •  
11.
  • Qian, Minjie, et al. (författare)
  • UV-A light induces a robust and dwarfed phenotype in cucumber plants (Cucumis sativus L.) without affecting fruit yield
  • 2020
  • Ingår i: Scientia Horticulturae. - : Elsevier. - 0304-4238 .- 1879-1018. ; 263
  • Tidskriftsartikel (refereegranskat)abstract
    • Solar ultraviolet (UV) light influences plant growth and metabolism. Whereas high doses of UV can be deleterious for plants, natural UV doses are important for morphogenesis in many plants species, including those used in horticulture. Greenhouses are widely used for horticultural production and common cladding materials strongly absorb UV. Thus, low amounts of UV may be limiting the optimal development in some plant species. Light supplementation using UV tubes can overcome UV deficiency. Here we study cucumber seedling production in the absence or presence of different UV wavelengths. UV-A- (315-400 nm) and UV-B- (280-315 nm) enriched light was used for exposure and parameters such as the maximum quantum yield of photosystem II, stem development (internode length and diameter, stem dry weight, stem weight per unit of stem length, and stem bending), root biomass, leaf biomass and specific leaf mass were measured. We found that UV-A supplementation resulted in shorter more compact and sturdy plants, properties that are positive from a horticultural perspective. In contrast, UV-B-enriched light led to even smaller plants that lacked the sturdy phenotype. There were no signs of decreased Fv/Fmunder any of the treatments, nor statistically significant differences in fruit yield between the control plants and the UV-treated plants when grown to harvest. In particular, the differences in fruit yield between the controls and the UV-A-treated plants were negligible in all cases. Thus, supplementary UV-A light can be an interesting alternative to chemical growth regulators for production of sturdy horticultural plants.
  •  
12.
  • Qian, Minjie, 1987-, et al. (författare)
  • UV regulates expression of phenylpropanoid biosynthesis genes in cucumber (Cucumis sativus L.) in an organ and spectrum dependent manner
  • 2019
  • Ingår i: Photochemical and Photobiological Sciences. - London, UK : Royal Society of Chemistry. - 1474-905X .- 1474-9092. ; 18:2, s. 424-433
  • Tidskriftsartikel (refereegranskat)abstract
    • Expression of cucumber (Cucumis sativus) genes encoding the phenylpropanoid and flavonoid biosynthetic enzymes phenylalanine ammonia lyase (PAL), cinnamic acid 4-hydroxylase (C4H), and chalcone synthase (CHS), was studied under control light conditions (photosynthetically active radiation, PAR) in root, stem, and leaf. Furthermore, expression was quantified in leaves illuminated with PAR and supplemental ultraviolet-A (315-400nm) or ultraviolet-B (280-315 nm) radiation. The expression pattern of all twelve CsPAL, threeCsC4H, and three CsCHS genes was established. Among the genes regulated by UV two general expression patterns emerge. One pattern applies to genes primarily regulated by enriched UV-A illumination (pattern 1). Another (pattern 2) was found for the genes regulated by enriched UV-B. Three of the pattern 2 genes (CsPAL4, CsPAL10, CsCHS2) displayed a particular sub-pattern (pattern 2b) with transcription enriched by at least 30 fold. In contrast to the other genes studied, the promoters of the genes regulated according to pattern 2b contained a combination of a number of cis-acting regulatory elements (MREs, ACEs, and G-boxes) that may be of importance for the particularly high enhancement of expression under UV-B- containing light. The regulation of phenylpropanoid and flavonoid biosynthesis genes in cucumber resembles that of a number of other plants. However, cucumber, due to its greater size, is an attractive species for more detailed studies of the fine regulation of spatial and temporal expression of key genes. This in turn, can facilitate the quantitative investigation of the relationships between different promotor motifs, the expression levels of each of these three genes, and metabolite accumulation profiles.
  •  
13.
  • Verdaguer, Dolors, et al. (författare)
  • UV-A radiation effects on higher plants : Exploring the known unknown
  • 2017
  • Ingår i: Plant Science. - : Elsevier. - 0168-9452 .- 1873-2259. ; 255, s. 72-81
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultraviolet-A radiation (UV-A: 315–400 nm) is a component of solar radiation that exerts a wide range of physiological responses in plants. Currently, field attenuation experiments are the most reliable source of information on the effects of UV-A. Common plant responses to UV-A include both inhibitory and stimulatory effects on biomass accumulation and morphology. UV-A effects on biomass accumulation can differ from those on root: shoot ratio, and distinct responses are described for different leaf tissues. Inhibitory and enhancing effects of UV-A on photosynthesis are also analysed, as well as activation of photoprotective responses, including UV-absorbing pigments. UV-A-induced leaf flavonoids are highly compound-specific and species-dependent. Many of the effects on growth and development exerted by UV-A are distinct to those triggered by UV-B and vary considerably in terms of the direction the response takes. Such differences may reflect diverse UV-perception mechanisms with multiple photoreceptors operating in the UV-A range and/or variations in the experimental approaches used. This review highlights a role that various photoreceptors (UVR8, phototropins, phytochromes and cryptochromes) may play in plant responses to UV-A when dose, wavelength and other conditions are taken into account.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-13 av 13
Typ av publikation
tidskriftsartikel (12)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (13)
Författare/redaktör
Jansen, Marcel A.K. (8)
Strid, Åke, Professo ... (7)
Kalbina, Irina, 1961 ... (5)
Rosenqvist, Eva, 196 ... (5)
Jansen, Marcel A K, ... (5)
Wängberg, Sten-Åke, ... (3)
visa fler...
Hylander, Samuel (3)
Aucamp, Pieter J. (3)
Bais, Alkiviadis F. (3)
Bornman, Janet F. (3)
Solomon, Keith R. (3)
Zepp, Richard G. (3)
Sulzberger, Barbara (3)
Barnes, Paul W. (3)
Madronich, Sasha (3)
Pandey, Krishna K. (3)
Robinson, Sharon A. (3)
Rose, Kevin C. (3)
Lucas, Robyn M. (3)
Andrady, Anthony L. (3)
Neale, Patrick J. (3)
Bernhard, Germar H. (3)
Neale, Rachel E. (3)
Robson, T. Matthew (3)
Young, Antony R. (3)
Qian, Minjie, 1987- (3)
Llorens, Laura (3)
Verdaguer, Dolors (3)
Petropavlovskikh, Ir ... (2)
Albert, Andreas (2)
Gaberščik, Alenka (2)
Martínez-Abaigar, Ja ... (2)
Núñez-Olivera, Encar ... (2)
Robson, Matthew (2)
Wallington, Timothy ... (2)
Busquets, Rosa (2)
Gwynn-Jones, Dylan (2)
Schreiner, Monika (2)
Strid, Åke, 1960- (2)
Hauser, Marie-Theres (2)
Olsen, Jorunn (2)
Turunen, Minna (2)
Zipoli, Gaetano (2)
Olsen, Catherine M (2)
Zhu, Liping (2)
Flygare, Ann-Marie, ... (2)
Hideg, Éva (2)
Revell, Laura E. (2)
Banaszak, Anastazia ... (2)
Bruckman, Laura S. (2)
visa färre...
Lärosäte
Örebro universitet (10)
Göteborgs universitet (3)
Linnéuniversitetet (3)
Språk
Engelska (13)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (13)
Lantbruksvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy