SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Janssens Ton V. W.) "

Sökning: WFRF:(Janssens Ton V. W.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chen, Lin, 1990, et al. (författare)
  • A Complete Multisite Reaction Mechanism for Low-Temperature NH3-SCR over Cu-CHA
  • 2020
  • Ingår i: ACS Catalysis. - : American Chemical Society (ACS). - 2155-5435. ; 10:10, s. 5646-5656
  • Tidskriftsartikel (refereegranskat)abstract
    • The dynamic character of the active centers has made it difficult to unravel the reaction path for NH3-assisted selective catalytic reduction (SCR) of nitrogen oxides over Cu-CHA. Herein, we use density functional theory calculations to suggest a complete reaction mechanism for low-temperature NH3-SCR The reaction is found to proceed in a multisite fashion over ammonia-solvated Cu cations Cu(NH3)(2+) and Bronsted acid sites. The activation of oxygen and the formation of the key intermediates HONO and H2NNO occur on the Cu sites, whereas the Bronsted acid sites facilitate the decomposition of HONO and H2NNO to N-2 and H2O. The activation and reaction of NO is found to proceed via the formation of nitrosonium (NO+) or nitrite (NO2-) intermediates. These low-temperature mechanisms take the dynamic character of Cu sites into account where oxygen activation requires pairs of Cu(NH3)(2+) complexes, whereas HO-NO and H3N-NO coupling may occur on single complexes. The formation and separation of Cu pairs is assisted by NH3 solvation. The complete reaction mechanism is consistent with measured kinetic data and provides a solid basis for future improvements of the low-temperature NH3-SCR reaction.
  •  
2.
  • Feng, Yingxin, 1994, et al. (författare)
  • A First-Principles Microkinetic Model for Low-Temperature NH3 Assisted Selective Catalytic Reduction of NO over Cu-CHA
  • 2021
  • Ingår i: ACS Catalysis. - : American Chemical Society (ACS). - 2155-5435. ; 11:23, s. 14395-14407
  • Tidskriftsartikel (refereegranskat)abstract
    • A first-principles microkinetic model is developed to investigate low-temperature ammonia assisted selective catalytic reduction (NH3-SCR) of NO over Cu-CHA. The reaction proceeds over NH3-solvated Cu-sites by the formation of H2NNO and HONO, which decompose to N2 and H2O over Brønsted acid sites. Non-selective N2O formation is considered by H2NNO decomposition over the Cu-sites. The adsorption of NH3 at oxidized Cu-sites is found to inhibit the reaction at low temperatures by hindering NO adsorption. For the reactions, we nd positive reaction orders with respect to NO and O2, whereas the reaction order with respect to NH3, is negative. The reaction orders and the obtained apparent activation energy are in good agreement with experimental data. A degree of rate control analysis shows that NH3-SCR over a pair of Cu(NH3)+2 is mainly controlled by NO adsorption below 200 C, whereas the formation of HONO and H2NNO becomes controlling at higher temperatures. The successful formulation of a first-principles microkinetic model for NH3-SCR rationalizes previous phenomenological models and links the kinetic behaviour with materials properties, which results in unprecedented insights in the function of Cu-CHA catalysts for NH3-SCR.
  •  
3.
  • Feng, Yingxin, 1994, et al. (författare)
  • The Role of H+- and Cu+-Sites for N2O Formation during NH3-SCR over Cu-CHA
  • 2021
  • Ingår i: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 125:8, s. 4595-4601
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanism for N2O formation over CHA and Cu-CHA zeolite catalysts during NH3-SCR is investigated using density functional theory calculations. Direct NH4NO3 decomposition, which is commonly regarded as the main source of N2O, is found to be associated with high barriers in the absence of Brønsted acid sites. Although Brønsted acid sites promote NH4NO3 decomposition, it is still a highly activated process. Low-temperature N2O formation is instead found to be connected with an NO + NH3 reaction over Cu-sites. In particular, N2O can be formed from H2NNO with a low barrier over Cu-OOH-Cu complexes, which are proposed intermediates in the catalytic cycle for NH3-SCR over Cu-CHA. This finding provides an explanation for the experimentally observed low-temperature N2O formation and the relation between Cu loading and N2O formation. The proposed mechanisms open up strategies to enhance the selectivity to N2 during NH3-SCR.
  •  
4.
  • Skoglundh, Magnus, 1965, et al. (författare)
  • Copper mobility in zeolite-based SCR catalysts
  • 2017
  • Ingår i: Presented at the 254th American Chemical Society National Meeting & Exposition, Washington D.C., USA, August 20-24, 2017.
  • Konferensbidrag (refereegranskat)abstract
    • Selective catalytic reduction with ammonia (NH3-SCR) is an effective, well-established method to eliminate nitrogen oxides (NOx) in oxygen excess for stationary and mobile applications. Titania-supported vanadia catalysts are traditionally used for NH3-SCR. This type of catalyst is effective in the range 300-450°C, but the NOx reduction efficiency decreases at both lower and higher temperatures. The efficiency of the NH3-SCR process can be improved significantly by using catalysts based on copper-exchanged zeolites and zeotypes, due to their high activity around 200°C. Solid-state ion-exchange in a mixture of copper oxide and zeolite is an efficient way to prepare such catalysts, but this process usually requires high (>700°C) temperatures. The ion-exchange can be considerably affected by appropriate choice of atmosphere during the process. It is shown that the copper-exchange is possible at unprecedented low temperatures, as low as 250°C, in presence of ammonia. The influence of the treatment conditions on the copper-exchange and the mechanism of the reaction-driven ion-exchange process will be presented and discussed. Such copper-exchanged zeolite structures with high copper loading are potentially interesting catalysts for a number of technical applications.Powder mixtures of Cu2O or CuO and zeolite with either CHA, MFI or *BEA framework structure were exposed to well-defined gas atmospheres at constant temperature. After the treatment, the SCR activity of the samples was determined by steady state and transient flow reactor experiments, and the physicochemical properties of the samples were characterized with bulk and surface sensitive characterization techniques. Furthermore, first-principles calculations were used to investigate the energetic conditions for the ion-exchange process.We show that in the presence of ammonia, copper becomes mobile at considerably lower temperatures,
  •  
5.
  • Skoglundh, Magnus, 1965, et al. (författare)
  • Mobility of copper in zeolite-based SCR catalysts
  • 2017
  • Ingår i: Presented at the 25th North American Catalysis Society Meeting, Denver, Colorado, USA, June 4-9 2017.
  • Konferensbidrag (refereegranskat)abstract
    • Selective catalytic reduction with ammonia (NH3-SCR) is a well-established and effective method to eliminate nitrogen oxides (NOx) in oxygen excess for stationary and mobile applications. Vanadia supported on titania was the first NH3-SCR catalyst that was commercialized. This type of catalyst is effective around 300-450°C, however at lower or higher temperatures, the efficiency of the catalyst to reduce NOx decreases. To increase the overall NOx reduction, high SCR activity around 200°C is required and copper-exchanged zeolites are interesting candidates in this respect. Solid-state ion-exchange in a mixture of copper oxide and zeolite is an efficient method to prepare such catalysts, but the process usually requires high (>700°C) temperatures. The ion-exchange process with copper oxides and zeolites can be considerably affected inpresence of reactive atmospheres. It is shown that the copper-exchange is possible at unprecedented low temperatures, as low as 250°C, when facilitated by ammonia. The influence of the treatment conditions on the copper-exchange and the mechanism of the ion-exchange process will be presented and discussed. Such copper-exchanged zeolite structures with high copper loading are potentially interesting catalysts for a number of technical applications.Powder mixtures of CuO or Cu2O and zeolite with either the MFI, *BEA or CHA framework structure were exposed to well-defined gas atmospheres at constant temperature. After the treatment the SCR activity was determined by steady state and transient flow reactor experiments, and the physico-chemical properties of the samples were characterized with bulk and surface sensitive characterization techniques. Furthermore, density functional theory calculations were used to investigate the energetic conditions for the ion-exchange process. We show that copper in the presence of ammonia becomes mobile at considerably lower temperatures,
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy