SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jepu I.) "

Sökning: WFRF:(Jepu I.)

  • Resultat 1-40 av 40
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bombarda, F., et al. (författare)
  • Runaway electron beam control
  • 2019
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 61:1
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:1
  • Forskningsöversikt (refereegranskat)
  •  
3.
  • Krasilnikov, A., et al. (författare)
  • Evidence of 9 Be + p nuclear reactions during 2ω CH and hydrogen minority ICRH in JET-ILW hydrogen and deuterium plasmas
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The intensity of 9Be + p nuclear fusion reactions was experimentally studied during second harmonic (2ω CH) ion-cyclotron resonance heating (ICRH) and further analyzed during fundamental hydrogen minority ICRH of JET-ILW hydrogen and deuterium plasmas. In relatively low-density plasmas with a high ICRH power, a population of fast H+ ions was created and measured by neutral particle analyzers. Primary and secondary nuclear reaction products, due to 9Be + p interaction, were observed with fast ion loss detectors, γ-ray spectrometers and neutron flux monitors and spectrometers. The possibility of using 9Be(p, d)2α and 9Be(p, α)6Li nuclear reactions to create a population of fast alpha particles and study their behaviour in non-active stage of ITER operation is discussed in the paper.
  •  
4.
  •  
5.
  • Joffrin, E., et al. (författare)
  • Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:9
  • Tidskriftsartikel (refereegranskat)
  •  
26.
  • Murari, A., et al. (författare)
  • A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors
  • 2024
  • Ingår i: Nature Communications. - 2041-1723 .- 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of thermonuclear fusion consists of producing electricity from the coalescence of light nuclei in high temperature plasmas. The most promising route to fusion envisages the confinement of such plasmas with magnetic fields, whose most studied configuration is the tokamak. Disruptions are catastrophic collapses affecting all tokamak devices and one of the main potential showstoppers on the route to a commercial reactor. In this work we report how, deploying innovative analysis methods on thousands of JET experiments covering the isotopic compositions from hydrogen to full tritium and including the major D-T campaign, the nature of the various forms of collapse is investigated in all phases of the discharges. An original approach to proximity detection has been developed, which allows determining both the probability of and the time interval remaining before an incoming disruption, with adaptive, from scratch, real time compatible techniques. The results indicate that physics based prediction and control tools can be developed, to deploy realistic strategies of disruption avoidance and prevention, meeting the requirements of the next generation of devices.
  •  
27.
  •  
28.
  •  
29.
  •  
30.
  •  
31.
  • Coenen, J. W., et al. (författare)
  • Transient induced tungsten melting at the Joint European Torus (JET)
  • 2017
  • Ingår i: Physica Scripta. - : IOP PUBLISHING LTD. - 0031-8949 .- 1402-4896. ; T170
  • Tidskriftsartikel (refereegranskat)abstract
    • Melting is one of the major risks associated with tungsten (W) plasma-facing components (PFCs) in tokamaks like JET or ITER. These components are designed such that leading edges and hence excessive plasma heat loads deposited at near normal incidence are avoided. Due to the high stored energies in ITER discharges, shallow surface melting can occur under insufficiently mitigated plasma disruption and so-called edge localised modes-power load transients. A dedicated program was carried out at the JET to study the physics and consequences of W transient melting. Following initial exposures in 2013 (ILW-1) of a W-lamella with leading edge, new experiments have been performed on a sloped surface (15 degrees slope) during the 2015/2016 (ILW-3) campaign. This new experiment allows significantly improved infrared thermography measurements and thus resolved important issue of power loading in the context of the previous leading edge exposures. The new lamella was monitored by local diagnostics: spectroscopy, thermography and high-resolution photography in between discharges. No impact on the main plasma was observed despite a strong increase of the local W source consistent with evaporation. In contrast to the earlier exposure, no droplet emission was observed from the sloped surface. Topological modifications resulting from the melting are clearly visible between discharges on the photographic images. Melt damage can be clearly linked to the infrared measurements: the emissivity drops in zones where melting occurs. In comparison with the previous leading edge experiment, no runaway melt motion is observed, consistent with the hypothesis that the escape of thermionic electrons emitted from the melt zone is largely suppressed in this geometry, where the magnetic field intersects the surface at lower angles than in the case of perpendicular impact on a leading edge. Utilising both exposures allows us to further test the model of the forces driving melt motion that successfully reproduced the findings from the original leading edge exposure. Since the ILW-1 experiments, the exposed misaligned lamella has now been retrieved from the JET machine and post mortem analysis has been performed. No obvious mass loss is observed. Profilometry of the ILW-1 lamella shows the structure of the melt damage which is in line with the modell predictions thus allowing further model validation. Nuclear reaction analysis shows a tenfold reduction in surface deuterium concentration in the molten surface in comparison to the non-molten part of the lamella.
  •  
32.
  • Pardanaud, C., et al. (författare)
  • Raman microscopy investigation of beryllium materials
  • 2016
  • Ingår i: Physica Scripta. - : Institute of Physics Publishing (IOPP). - 0031-8949 .- 1402-4896. ; T167
  • Tidskriftsartikel (refereegranskat)abstract
    • We report for the first time on the ability of Raman microscopy to give information on the structure and composition of Be related samples mimicking plasma facing materials that will be found in ITER. For that purpose, we investigate two types of material. First: Be, W, Be1W9, and Be5W5 deposits containing a few percents of D or N, and second: a Mo mirror exposed to plasma in the main JET chamber (in the framework of the first mirror test in JET with ITER-like wall). We performed atomic quantifications using ion beam analysis for the first samples. We also did atomic force microscopy. We found defect induced Raman bands in Be, Be1W9, and Be5W5 deposits. Molybdenum oxide has been identified showing an enhancement due to a resonance effect in the UV domain.
  •  
33.
  • Jepu, I, et al. (författare)
  • Beryllium melting and erosion on the upper dump plates in JET during three ITER-like wall campaigns
  • 2019
  • Ingår i: Nuclear Fusion. - : Institute of Physics (IOP). - 0029-5515 .- 1741-4326. ; 59:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Data on erosion and melting of beryllium upper limiter tiles, so-called dump plates (DP), are presented for all three campaigns in the JET tokamak with the ITER-like wall. High-resolution images of the upper wall of JET show clear signs of flash melting on the ridge of the roofshaped tiles. The melt layers move in the poloidal direction from the inboard to the outboard tile, ending on the last DP tile with an upward going waterfall-like melt structure. Melting was caused mainly by unmitigated plasma disruptions. During three ILW campaigns, around 15% of all 12376 plasma pulses were catalogued as disruptions. Thermocouple data from the upper dump plates tiles showed a reduction in energy delivered by disruptions with fewer extreme events in the third campaign, ILW-3, in comparison to ILW-1 and ILW-2. The total Be erosion assessed via precision weighing of tiles retrieved from JET during shutdowns indicated the increasing mass loss across campaigns of up to 0.6 g from a single tile. The mass of splashed melted Be on the upper walls was also estimated using the high-resolution images of wall components taken after each campaign. The results agree with the total material loss estimated by tile weighing (similar to 130 g). Morphological and structural analysis performed on Be melt layers revealed a multilayer structure of re-solidified material composed mainly of Be and BeO with some heavy metal impurities Ni, Fe, W. IBA analysis performed across the affected tile ridge in both poloidal and toroidal direction revealed a low D concentration, in the range 1-4 x 10(17) D atoms cm(-2).
  •  
34.
  • Rubel, Marek, et al. (författare)
  • Fuel inventory and deposition in castellated structures in JET-ILW
  • 2017
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing. - 0029-5515 .- 1741-4326. ; 57:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Since 2011 the JET tokamak has been operated with a metal ITER-like wall (JET-ILW) including castellated beryllium limiters and lamellae-type bulk tungsten tiles in the divertor. This has allowed for a large scale test of castellated plasma-facing components (PFC). Procedures for sectioning the limiters into single blocks of castellation have been developed. This facilitated morphology studies of morphology of surfaces inside the grooves for limiters after experimental campaigns 2011-2012 and 2013-2014. The deposition in the 0.4-0.5 mm wide grooves of the castellation is 'shallow'. It reaches 1-2 mm into the 12 mm deep gap. Deuterium concentrations are small (mostly below 1 × 1018 cm-2). The estimated total amount of deuterium in all the castellated limiters does not exceed the inventory of the plasma-facing surfaces (PFS) of the limiters. There are only traces of Ni, Cr and Fe deposited in the castellation gaps. The same applies to the carbon content. Also low deposition of D, Be and C has been measured on the sides of the bulk tungsten lamellae pieces. Modelling clearly reflects: (a) a sharp decrease in the measured deposition profiles and(b) an increase in deposition with the gap width. Both experimental and modelling data give a strong indication and information to ITER that narrow gaps in the castellated PFC are essential. X-ray diffraction on PFS has clearly shown two distinct composition patterns: Be with an admixture of Be-W intermetallic compounds (e.g. Be22W) in the deposition zone, whilst only pure Be has been detected in the erosion zone. The lack of compound formation in the erosion zone indicates that no distinct changes in the thermo-mechanical properties of the Be PFC might be expected.
  •  
35.
  • Widdowson, A., et al. (författare)
  • Experience of handling beryllium, tritium and activated components from JET ITER like wall
  • 2016
  • Ingår i: Physica Scripta. - : Institute of Physics Publishing (IOPP). ; T167
  • Konferensbidrag (refereegranskat)abstract
    • JET components are removed periodically for surface analysis to assess material migration and fuel retention. This paper describes issues related to handling JET components and procedures for preparing samples for analysis; in particular a newly developed procedure for cutting beryllium tiles is presented. Consideration is also given to the hazards likely due to increased tritium inventory and material activation from 14 MeV neutrons following the planned TT and DT operations (DTE2) in 2017. Conclusions are drawn as to the feasibility of handling components from JET post DTE2.
  •  
36.
  • Eriksson, Benjamin, et al. (författare)
  • Determining the fuel ion ratio for D(T)and T(D) plasmas at JET using neutron time-of-flight spectrometry
  • 2022
  • Ingår i: Plasma Physics and Controlled Fusion. - : Institute of Physics (IOP). - 0741-3335 .- 1361-6587. ; 64
  • Tidskriftsartikel (refereegranskat)abstract
    • The fusion fuel ion ratio, nΤ/nD, is an important plasma parameter that needs to be tuned to maximize the power of a tokamak type fusion reactor. It is recognized as a parameter required for optimizing several ITER operating scenarios, and will likely be continuously monitored in future high-performance fusion devices such as DEMO. Tritium was recently introduced in the Joint European Torus (JET) plasma for the first time since the 1997 DTE1 and 2003 TTE campaigns, enabling the possibility to investigate fuel ion ratios. We present a method for measuring nΤ/nD using neutron time-of-flight (TOF) spectrometry. By fitting the measured neutron spectral features, the relative reaction rate intensities between different ion species can be inferred, from which the fuel ion ratio can be extracted for a corresponding modeled reactivity. Unlike previous measurements of nT/nD using neutron spectrometry, we utilize the neutron energy continuum produced in the three-body TT reaction to determine the fuel ion ratio for plasmas with large concentrations of tritium. Furthermore, the use of neutron TOF spectrometry has never previously been demonstrated for evaluating nT/nD. The method is applied to TOF spectra acquired with TOFOR (JET name KM11) and shown to be consistent with the optical JET diagnostic KT5P which uses optical spectroscopy of a modified Penning gauge plasma to measure tritium and deuterium concentrations in the divertor exhaust gas.
  •  
37.
  • Krat, S., et al. (författare)
  • Comparison of erosion and deposition in JET divertor during the first three ITER-like wall campaigns
  • 2020
  • Ingår i: Physica Scripta. - : IOP PUBLISHING LTD. - 0031-8949 .- 1402-4896. ; T171:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The manuscript presents an overview of the erosion and deposition data in the inner and outer JET divertor observed during the first three ITER-like wall campaigns (JET-ILW1, JET-ILW2, JET-ILW3). Erosion and deposition were studied using core samples cut out from divertor tiles. For the studied samples a similar general deposition pattern was observed in all three campaigns: More than 60% of the total deposition occurred in the upper region of the inner divertor on tiles 0 and 1, where Be was transported and deposited from the scrape-off layer. High erosion was observed only on tile 5. In JET-ILW2 and 3, erosion together with high power fluxes was observed in the outer divertor at the bottom of tile 7. Additionally, deposition peaks were observed on the sloping parts of tiles 4 and 6, which were more pronounced in JET-ILW2 and 3 due to placing the strike point more often on these tiles. The deposits consisted primarily of Be, with some additional D and C. Deposition rates were observed to decrease from campaign to campaign, with the C deposition rate decreasing the most, more than 2 times from JET-ILW1 to JET-ILW3. D retention up to levels of similar to 1 at% was observed up to large depths in the W protective coatings in all campaigns.
  •  
38.
  •  
39.
  • Zayachuk, Y., et al. (författare)
  • Fuel desorption from JET-ILW materials : assessment of analytical approach and identification of sources of uncertainty and discrepancy
  • 2023
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 63:9, s. 096010-
  • Tidskriftsartikel (refereegranskat)abstract
    • This work was carried out to identify sources of errors, uncertainties and discrepancies in studies of fuel retention in wall components from the JET tokamak using methods based on thermal desorption. Parallel aims were to establish good practices in measurements and to unify procedures in data handling. A comprehensive program designed for deuterium quantification comprised the definition and preparation of two types of materials (samples of JET limiter Be tiles and deuterium-containing targets produced in the laboratory by magnetron-assisted deposition), their pre-characterization, quantitative analyses of the desorption products in three different thermal desorption spectroscopy systems and a detailed critical comparison of the results. Tritium levels were also determined by several techniques in samples from JET and in tritiated targets manufactured specifically for this research program. Facilities available for studies of Be- and tritium-contaminated materials from JET are presented. Apparatus development, future research options and challenges are discussed.
  •  
40.
  • Zayachuk, Y., et al. (författare)
  • Impact of water ingress on deuterium release, oxidation, and dust generation in beryllium plasma-facing components
  • 2023
  • Ingår i: Nuclear Materials and Energy. - : Elsevier BV. - 2352-1791. ; 35
  • Tidskriftsartikel (refereegranskat)abstract
    • Beryllium samples from the JET ITER-like wall limiter tiles with either co-deposits or surface cracks caused by melt damage, were immersed into boiling water for 4 h 15 min to simulate and assess the impact of coolant water ingress into a tokamak on the state of Be components. Microscopy of the water-treated surfaces and the lack of residue in the water revealed that no thermomechanical damage (cracking or exfoliation) occurred to the samples during the exposure. Ion beam analysis showed no measurable release of deuterium from the samples. Combined ion beam analysis and Raman spectroscopy indicated only some degree of surface oxidation, but no thick oxide films were formed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-40 av 40

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy