SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ji Fuxiang) "

Sökning: WFRF:(Ji Fuxiang)

  • Resultat 1-18 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cai, Weidong, et al. (författare)
  • Multicolor light emission and multifunctional applications in double perovskite-Cs 2 NaInCl 6 by Cu + /Sb 3+co-doping
  • 2024
  • Ingår i: Chemical Engineering Journal. - : ELSEVIER SCIENCE SA. - 1385-8947 .- 1873-3212. ; 489
  • Tidskriftsartikel (refereegranskat)abstract
    • Halide double perovskites managed by metal doping approach can exhibit dual emission colors, which have been considered as promising multicolor luminescent materials. However, an independent and stable emission at yellow region is missing owing to limited doping candidates, hindering the further commercialization of multicolor luminescence applications in double perovskites. In this work, we successfully obtain stable multicolor emission with PLQE (photoluminescence quantum yield) as high as 78% through developing the CuI doping strategy in Sb-Cs2NaInCl6. By introducing a high CuI feed ratio in airtight autoclave to compete the oxidization effect, the oxidization of CuI into CuII (detrimental factor for high PLQE due to serious quenching effect) is largely suppressed. With changing the CuI feed ratio, at least four distinct emission colors ranging from blue, purple, pink to yellow can be realized via changing the excitation wavelength. Depending on tunable multicolor emission, we further demonstrate the promise of our co-doped double perovskites in anti-counterfeiting technology and multicolor lighting devices. Our results open the way for enriching the optical applications of double perovskites based on multicolor emission.
  •  
2.
  • Ji, Fuxiang, et al. (författare)
  • Amine Gas-Induced Reversible Optical Bleaching of Bismuth-Based Lead-Free Perovskite Thin Films
  • 2024
  • Ingår i: Advanced Science. - : Wiley-VCH Verlagsgesellschaft. - 2198-3844. ; 11:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Reversible optical property changes in lead-free perovskites have recently received great interest due to their potential applications in smart windows, sensors, data encryption, and various on-demand devices. However, it is challenging to achieve remarkable color changes in their thin films. Here, methylamine gas (CH3NH2, MA0) induced switchable optical bleaching of bismuth (Bi)-based perovskite films is demonstrated for the first time. By exposure to an MA0 atmosphere, the color of Cs2AgBiBr6 (CABB) films changes from yellow to transparent, and the color of Cs3Bi2I9 (CBI) films changes from dark red to transparent. More interestingly, the underlying reason is found to be the interactions between MA0 and Bi3+ with the formation of an amorphous liquefied transparent intermediate phase, which is different from that of lead-based perovskite systems. Moreover, the generality of this approach is demonstrated with other amine gases, including ethylamine (C2H5NH2, EA0) and butylamine (CH3(CH2)3NH2, BA0), and another compound, Cs3Sb2I9, by observing a similar reversible optical bleaching phenomenon. The potential for the application of CABB and CBI films in switchable smart windows is investigated. This study provides valuable insights into the interactions between amine gases and lead-free perovskites, opening up new possibilities for high-efficiency optoelectronic and stimuli-responsive applications of these emerging Bi-based materials.
  •  
3.
  • Ji, Fuxiang, et al. (författare)
  • Amine Gas‐Induced Reversible Optical Bleaching of Bismuth‐Based Lead‐Free Perovskite Thin Films
  • 2023
  • Ingår i: Advanced Science. - : WILEY. - 2198-3844. ; 11:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Reversible optical property changes in lead-free perovskites have recently received great interest due to their potential applications in smart windows, sensors, data encryption, and various on-demand devices. However, it is challenging to achieve remarkable color changes in their thin films. Here, methylamine gas (CH3NH2, MA0) induced switchable optical bleaching of bismuth (Bi)-based perovskite films is demonstrated for the first time. By exposure to an MA0 atmosphere, the color of Cs2AgBiBr6 (CABB) films changes from yellow to transparent, and the color of Cs3Bi2I9 (CBI) films changes from dark red to transparent. More interestingly, the underlying reason is found to be the interactions between MA0 and Bi3+ with the formation of an amorphous liquefied transparent intermediate phase, which is different from that of lead-based perovskite systems. Moreover, the generality of this approach is demonstrated with other amine gases, including ethylamine (C2H5NH2, EA0) and butylamine (CH3(CH2)3NH2, BA0), and another compound, Cs3Sb2I9, by observing a similar reversible optical bleaching phenomenon. The potential for the application of CABB and CBI films in switchable smart windows is investigated. This study provides valuable insights into the interactions between amine gases and lead-free perovskites, opening up new possibilities for high-efficiency optoelectronic and stimuli-responsive applications of these emerging Bi-based materials.
  •  
4.
  • Ji, Fuxiang, 1991- (författare)
  • Bandgap Engineering of Lead-Free Halide Double Perovskites
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Lead-free halide double perovskites (HDPs, A2BIBIIIX6) with attractive optical and electronic features are regarded as one of the most promising alternatives to overcome the toxicity and stability issues of lead halide perovskites. They provide a wide range of possible combinations and rich substitutional chemistry with interesting properties for various optoelectronic devices. However, the performance of state-of-the-art lead-free HDPs is not yet comparable to that of lead halide perovskites, especially in the photovoltaic field. One of the main reasons for this is that HDPs usually have large and/or indirect bandgaps, which limit their optical and optoelectronic properties in the visible and infrared region. In this thesis, we attempt to modify the bandgap and optical properties of HDPs using metal doping/alloying and crystallization control, as well as provide detailed understanding of the alloying at the atomic level. We also observe significant changes of the bandgap of HDPs at different temperatures (i.e., thermochromism) and uncover the reasons behind it. We first adopt the metal doping/alloying strategy to alter the absorption properties of benchmark HDPs Cs2AgBiBr6. By introducing Cu as the dopant in Cs2AgBiBr6, we significantly broaden the absorption edge from around 610 nm to around 860 nm. Systematic characterizations indicate that Cu doping introduces defect states (sub-bandgap states) in the bandgap, without changing the bandgap of Cs2AgBiBr6. Interestingly, these sub-bandgaps can generate considerable amount of band carriers upon optical excitation, making these double perovskites promising for near-infrared light detection. In parallel with the material modification using the metal doping/alloying strategy, the fundamental understanding of these doped/alloyed double perovskite is also of critical importance. In the second paper, we reveal the atomic-level structure of alloyed double perovskites by presenting a series of double perovskite alloys with the chemical formula Cs2AgIn1-xFexCl6 (x = 0-1) showing tunable bandgaps in the range of 2.8-1.6 eV. Our results show that Fe3+ substitutes In3+ in the lattice with the formation of [FeCl6]3−·[AgCl6]5− domains, which grow larger gradually as the Fe3+ concentration increases. It is noted that these domains could be further connected to form microscopically segregated Fe3+-rich phases in the double perovskite alloys. To narrow the bandgap of Cs2AgBiBr6, we also develop a crystallization control approach, where high temperature is employed to assist the single crystal growth. By simply increasing the crystal growth temperature from 60 oC to 150 oC, the bandgap of Cs2AgBiBr6 crystals can be reduced from 1.98 eV to 1.72 eV, which is the lowest reported bandgap for Cs2AgBiBr6 at ambient conditions. The underlying reason is hypothesized to be related to the increased level of Ag–Bi disorder in the crystal structure. Lastly, we observe an interesting reversible thermochromic behavior in HDPs Cs2NaFeCl6. Specifically, the optical bandgap of Cs2NaFeCl6 is reduced from 2.06 eV to 1.86 eV when the temperature increases from RT to 150 oC and turns back to its original value after cooling. Meanwhile, we observe lattice expansion during the heating/ cooling process without phase transition. Our first-principles calculation indicates that the underlying mechanism for the thermochromic phenomenon in Cs2NaFeCl6 is mainly related to the electron-phonon coupling. Although the development of HDPs is in its early stages, we believe that HDPs with impressive optical and electronic properties and rich substitutional chemistry have a bright future in optoelectronic and multifunctional applications. Our findings shed new light to the absorption and bandgap modulation of HDPs and provide new insights into the atomic-level structures of DPAs, which can help to develop efficient optoelectronic devices. 
  •  
5.
  • Ji, Fuxiang, 1991-, et al. (författare)
  • Challenges and Progress in Lead-Free Halide Double Perovskite Solar Cells
  • 2023
  • Ingår i: Solar RRL. - : John Wiley & Sons. - 2367-198X. ; 7:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Lead-free halide double perovskites (HDPs) with a chemical formula of A(2)B(+)B(3+)X(6) are booming as attractive alternatives to solve the toxicity issue of lead-based halide perovskites (APbX(3)). HDPs show excellent stability, a wide range of possible combinations, and attractive optoelectronic features. Although a number of novel HDPs have been studied, the power conversion efficiency of the state-of-the-art double perovskite solar cell is still far inferior to that of the dominant Pb-based ones. Understanding the fundamental challenges is essential for further increasing device efficiency. In this review, HDPs with attractive electronic and optical properties are focused on, and current challenges in material properties and device fabrication that limit high-efficiency photovoltaics are analyzed. Finally, the promising approaches and views to overcome these bottlenecks are highlighted.
  •  
6.
  • Ji, Fuxiang, et al. (författare)
  • Lead-Free Halide Double Perovskite Cs2AgBiBr6 with Decreased Band Gap
  • 2020
  • Ingår i: Angewandte Chemie International Edition. - : Wiley-VCH Verlag. - 1433-7851 .- 1521-3773. ; 59:35, s. 15191-15194
  • Tidskriftsartikel (refereegranskat)abstract
    • Environmentally friendly halide double perovskites with improved stability are regarded as a promising alternative to lead halide perovskites. The benchmark double perovskite, Cs2AgBiBr6, shows attractive optical and electronic features, making it promising for high-efficiency optoelectronic devices. However, the large band gap limits its further applications, especially for photovoltaics. Herein, we develop a novel crystal-engineering strategy to significantly decrease the band gap by approximately 0.26 eV, reaching the smallest reported band gap of 1.72 eV for Cs2AgBiBr6 under ambient conditions. The band-gap narrowing is confirmed by both absorption and photoluminescence measurements. Our first-principles calculations indicate that enhanced Ag/Bi disorder has a large impact on the band structure and decreases the band gap, providing a possible explanation of the observed band-gap narrowing effect. This work provides new insights for achieving lead-free double perovskites with suitable band gaps for optoelectronic applications. 
  •  
7.
  • Ji, Fuxiang, et al. (författare)
  • Near-Infrared Light-Responsive Cu-Doped Cs2AgBiBr6
  • 2020
  • Ingår i: Advanced Functional Materials. - : WILEY-V C H VERLAG GMBH. - 1616-301X .- 1616-3028. ; 30:51
  • Tidskriftsartikel (refereegranskat)abstract
    • Lead-free halide double perovskites (A(2)B(I)B(III)X(6)) with attractive optical and electronic features are considered to be a promising candidate to overcome the toxicity and stability issues of lead halide perovskites (APbX(3)). However, their poor absorption profiles limit device performance. Here the absorption band edge of Cs(2)AgBiBr(6)double perovskite to the near-infrared range is significantly broadened by developing doped double perovskites, Cs-2(Ag:Cu)BiBr6. The partial replacement of Ag ions by Cu ions in the crystal lattice is confirmed by the X-ray photoelectron spectroscopy (XPS) and solid-state nuclear magnetic resonance (ssNMR) measurements. Cu doping barely affects the bandgap of Cs2AgBiBr6; instead it introduces subbandgap states with strong absorption to the near-infrared range. More interestingly, the near-infrared absorption can generate band carriers upon excitation, as indicated by the photoconductivity measurement. This work sheds new light on the absorption modulation of halide double perovskites for future efficient optoelectronic devices.
  •  
8.
  • Ji, Fuxiang, 1991-, et al. (författare)
  • Remarkable Thermochromism in the Double Perovskite Cs2NaFeCl6
  • 2023
  • Ingår i: Advanced Optical Materials. - : Wiley-Blackwell. - 2162-7568 .- 2195-1071.
  • Tidskriftsartikel (refereegranskat)abstract
    • Lead-free halide double perovskites (HDPs) have emerged as a new generation of thermochromic materials. However, further materials development and mechanistic understanding are required. Here, a highly stable HDP Cs2NaFeCl6 single crystal is synthesized, and its remarkable and fully reversible thermochromism with a wide color variation from light-yellow to black over a temperature range of 10 to 423 K is investigated. First-principles, density functional theory (DFT)-based calculations indicate that the thermochromism in Cs2NaFeCl6 is an effect of electron–phonon coupling. The temperature sensitivity of the bandgap in Cs2NaFeCl6 is up to 2.52 meVK−1 based on the Varshni equation, which is significantly higher than that of lead halide perovskites and many conventional group-IV, III–V semiconductors. Meanwhile, this material shows excellent environmental, thermal, and thermochromic cycle stability. This work provides valuable insights into HDPs' thermochromism and sheds new light on developing efficient thermochromic materials.
  •  
9.
  • Ji, Fuxiang, 1991-, et al. (författare)
  • Remarkable Thermochromism in the Double Perovskite Cs2NaFeCl6
  • 2024
  • Ingår i: Advanced Optical Materials. - : John Wiley & Sons. - 2162-7568 .- 2195-1071. ; 12:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Lead-free halide double perovskites (HDPs) have emerged as a new generation of thermochromic materials. However, further materials development and mechanistic understanding are required. Here, a highly stable HDP Cs2NaFeCl6 single crystal is synthesized, and its remarkable and fully reversible thermochromism with a wide color variation from light-yellow to black over a temperature range of 10 to 423 K is investigated. First-principles, density functional theory (DFT)-based calculations indicate that the thermochromism in Cs2NaFeCl6 is an effect of electron-phonon coupling. The temperature sensitivity of the bandgap in Cs2NaFeCl6 is up to 2.52 meVK(-1) based on the Varshni equation, which is significantly higher than that of lead halide perovskites and many conventional group-IV, III-V semiconductors. Meanwhile, this material shows excellent environmental, thermal, and thermochromic cycle stability. This work provides valuable insights into HDPs' thermochromism and sheds new light on developing efficient thermochromic materials.
  •  
10.
  • Ji, Fuxiang, et al. (författare)
  • The atomic-level structure of bandgap engineered double perovskite alloys Cs2AgIn1-xFexCl6
  • 2021
  • Ingår i: Chemical Science. - : Royal Society of Chemistry. - 2041-6520 .- 2041-6539. ; 12:5, s. 1730-1735
  • Tidskriftsartikel (refereegranskat)abstract
    • Although lead-free halide double perovskites are considered as promising alternatives to lead halide perovskites for optoelectronic applications, state-of-the-art double perovskites are limited by their large bandgap. The doping/alloying strategy, key to bandgap engineering in traditional semiconductors, has also been employed to tune the bandgap of halide double perovskites. However, this strategy has yet to generate new double perovskites with suitable bandgaps for practical applications, partially due to the lack of fundamental understanding of how the doping/alloying affects the atomic-level structure. Here, we take the benchmark double perovskite Cs2AgInCl6 as an example to reveal the atomic-level structure of double perovskite alloys (DPAs) Cs2AgIn1-xFexCl6 (x = 0-1) by employing solid-state nuclear magnetic resonance (ssNMR). The presence of paramagnetic alloying ions (e.g. Fe3+ in this case) in double perovskites makes it possible to investigate the nuclear relaxation times, providing a straightforward approach to understand the distribution of paramagnetic alloying ions. Our results indicate that paramagnetic Fe3+ replaces diamagnetic In3+ in the Cs2AgInCl6 lattice with the formation of [FeCl6](3-)center dot[AgCl6](5-) domains, which show different sizes and distribution modes in different alloying ratios. This work provides new insights into the atomic-level structure of bandgap engineered DPAs, which is of critical significance in developing efficient optoelectronic/spintronic devices.
  •  
11.
  • Mopoung, Kunpot, et al. (författare)
  • Understanding Antiferromagnetic Coupling in Lead-Free Halide Double Perovskite Semiconductors
  • 2024
  • Ingår i: The Journal of Physical Chemistry C. - : AMER CHEMICAL SOC. - 1932-7447 .- 1932-7455. ; 128:12, s. 5313-5320
  • Tidskriftsartikel (refereegranskat)abstract
    • Solution-processable semiconductors with antiferromagnetic (AFM) order are attractive for future spintronics and information storage technology. Halide perovskites containing magnetic ions have emerged as multifunctional materials, demonstrating a cross-link between structural, optical, electrical, and magnetic properties. However, stable optoelectronic halide perovskites that are antiferromagnetic remain sparse, and the critical design rules to optimize magnetic coupling still must be developed. Here, we combine the complementary magnetometry and electron-spin-resonance experiments, together with first-principles calculations to study the antiferromagnetic coupling in stable Cs-2(Ag:Na)FeCl6 bulk semiconductor alloys grown by the hydrothermal method. We show the importance of nonmagnetic monovalence ions at the B-I site (Na/Ag) in facilitating the superexchange interaction via orbital hybridization, offering the tunability of the Curie-Weiss parameters between -27 and -210 K, with a potential to promote magnetic frustration via alloying the nonmagnetic B-I site (Ag:Na ratio). Combining our experimental evidence with first-principles calculations, we draw a cohesive picture of the material design for B-site-ordered antiferromagnetic halide double perovskites.
  •  
12.
  • Ning, Weihua, et al. (författare)
  • Magnetizing lead-free halide double perovskites
  • 2020
  • Ingår i: Science Advances. - : American Association for the Advancement of Science. - 2375-2548. ; 6:45
  • Tidskriftsartikel (refereegranskat)abstract
    • Spintronics holds great potential for next-generation high-speed and low-power consumption information technology. Recently, lead halide perovskites (LHPs), which have gained great success in optoelectronics, also show interesting magnetic properties. However, the spin-related properties in LHPs originate from the spin-orbit coupling of Pb, limiting further development of these materials in spintronics. Here, we demonstrate a new generation of halide perovskites, by alloying magnetic elements into optoelectronic double perovskites, which provide rich chemical and structural diversities to host different magnetic elements. In our iron-alloyed double perovskite, Cs2Ag(Bi:Fe)Br-6, Fe3+ replaces Bi3+ and forms FeBr6 clusters that homogenously distribute throughout the double perovskite crystals. We observe a strong temperature-dependent magnetic response at temperatures below 30 K, which is tentatively attributed to a weak ferromagnetic or antiferromagnetic response from localized regions. We anticipate that this work will stimulate future efforts in exploring this simple yet efficient approach to develop new spintronic materials based on lead-free double perovskites.
  •  
13.
  • Ning, Weihua, et al. (författare)
  • Thermochromic Lead-Free Halide Double Perovskites
  • 2019
  • Ingår i: Advanced Functional Materials. - : WILEY-V C H VERLAG GMBH. - 1616-301X .- 1616-3028. ; 29:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Lead-free halide double perovskites with diverse electronic structures and optical responses, as well as superior material stability show great promise for a range of optoelectronic applications. However, their large bandgaps limit their applications in the visible light range such as solar cells. In this work, an efficient temperature-derived bandgap modulation, that is, an exotic fully reversible thermochromism in both single crystals and thin films of Cs2AgBiBr6 double perovskites is demonstrated. Along with the thermochromism, temperature-dependent changes in the bond lengths of Ag Symbol of the Klingon Empire Br (R-Ag Symbol of the Klingon Empire Br) and Bi Symbol of the Klingon Empire Br (R-Bi Symbol of the Klingon Empire Br) are observed. The first-principle molecular dynamics simulations reveal substantial anharmonic fluctuations of the R-Ag Symbol of the Klingon Empire Br and R-Bi Symbol of the Klingon Empire Br at high temperatures. The synergy of anharmonic fluctuations and associated electron-phonon coupling, and the peculiar spin-orbit coupling effect, is responsible for the thermochromism. In addition, the intrinsic bandgap of Cs2AgBiBr6 shows negligible changes after repeated heating/cooling cycles under ambient conditions, indicating excellent thermal and environmental stability. This work demonstrates a stable thermochromic lead-free double perovskite that has great potential in the applications of smart windows and temperature sensors. Moreover, the findings on the structure modulation-induced bandgap narrowing of Cs2AgBiBr6 provide new insights for the further development of optoelectronic devices based on the lead-free halide double perovskites.
  •  
14.
  • Yang, Jie, et al. (författare)
  • Stable, High-Sensitivity and Fast-Response Photodetectors Based on Lead-Free Cs2AgBiBr6 Double Perovskite Films
  • 2019
  • Ingår i: Advanced Optical Materials. - : WILEY-V C H VERLAG GMBH. - 2162-7568 .- 2195-1071. ; 7:13
  • Tidskriftsartikel (refereegranskat)abstract
    • Solution-processed metal halide perovskites (MHPs) have demonstrated great advances on achieving high-performance photodetectors. However, the intrinsic material instability and the toxicity of lead still hinder the practical applications of MHPs-based photodetectors. In this work, the first highly sensitive and fast-response lead-free perovskite photodetectors based on Cs2AgBiBr6 double perovskite films are demonstrated. A convenient solution method is developed to deposit high-quality Cs2AgBiBr6 film with large grain sizes, low trap densities, and long charge carrier lifetimes. Incorporated within a photodiode device architecture comprised of optimized hole- and electron-transporting layers, lead-free perovskite photodetectors are achieved exhibiting a high detectivity of 3.29 x 10(12) Jones, a large linear dynamic range of 193 dB, and a fast response time of approximate to 17 ns. All the key figures of merit of the devices are comparable with the reported best-performing photodetectors based on lead halide perovskites. In addition, the resulting devices exhibit excellent thermal and environmental stability. The nonencapsulated devices show negligible degradation after thermal stressing at 150 degrees C and less than 5% degradation in the photoresponsivity after storage in ambient air for approximate to 2300 h. The results demonstrate the great potential of the lead-free Cs2AgBiBr6 double perovskite in applications for environmentally friendly and high-performance photodetectors.
  •  
15.
  • Yi, Chang, et al. (författare)
  • Intermediate-phase-assisted low-temperature formation of gamma-CsPbI3 films for high-efficiency deep-red light-emitting devices
  • 2020
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Black phase CsPbI3 is attractive for optoelectronic devices, while usually it has a high formation energy and requires an annealing temperature of above 300 degrees C. The formation energy can be significantly reduced by adding HI in the precursor. However, the resulting films are not suitable for light-emitting applications due to the high trap densities and low photoluminescence quantum efficiencies, and the low temperature formation mechanism is not well understood yet. Here, we demonstrate a general approach for deposition of gamma -CsPbI3 films at 100 degrees C with high photoluminescence quantum efficiencies by adding organic ammonium cations, and the resulting light-emitting diode exhibits an external quantum efficiency of 10.4% with suppressed efficiency roll-off. We reveal that the low-temperature crystallization process is due to the formation of low-dimensional intermediate states, and followed by interionic exchange. This work provides perspectives to tune phase transition pathway at low temperature for CsPbI3 device applications. Exploiting low-temperature formed black phase CsPbI3 for light-emitting applications remains a challenge. Here, the authors propose a method to enable the deposition of gamma -CsPbI3 films at 100C and demonstrate a light-emitting diode with an external quantum efficiency of 10.4% with suppressed efficiency roll-off.
  •  
16.
  • Yu, Yong, et al. (författare)
  • Dimensional Tailoring of Ultrahigh Vacuum Annealing-Assisted Quantum Wells for the Efficiency Enhancement of Perovskite Light-Emitting Diodes
  • 2020
  • Ingår i: ACS Applied Materials and Interfaces. - : AMER CHEMICAL SOC. - 1944-8244 .- 1944-8252. ; 12:22, s. 24965-24970
  • Tidskriftsartikel (refereegranskat)abstract
    • Quasi-two-dimensional (Q-2D) perovskites featured with multidimensional quantum wells (QWs) have been the main candidates for optoelectronic applications. However, excessive low-dimensional perovskites are unfavorable to the device efficiency due to the phonon-exciton interaction and the inclusion of insulating large organic cations. Herein, the formation of low-dimensional QWs is suppressed by removing the organic cation 1-naphthylmethylamine iodide (NMAI) through ultrahigh vacuum (UHV) annealing. Perovskite light-emitting diode (PLED) devices based on films annealed with optimized UHV conditions show a higher external quantum efficiency (EQE) of 13.0% and wall-plug efficiency of 11.1% compared to otherwise identical devices with films annealed in a glovebox.
  •  
17.
  • Zhang, Bin, et al. (författare)
  • Lattice Dynamics and Electron-Phonon Coupling in Double Perovskite Cs2NaFeCl6
  • 2023
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 127:4, s. 1908-1916
  • Tidskriftsartikel (refereegranskat)abstract
    • Phonon-phonon and electron/exciton-phonon coupling play a vitally important role in thermal, electronic, as well as optical properties of metal halide perovskites. In this work, we evaluate phonon anharmonicity and coupling between electronic and vibrational excitations in novel double perovskite Cs2NaFeCl6 single crystals. By employing comprehensive Raman measurements combined with first-principles theoretical calculations, we identify four Raman-active vibrational modes. Polarization properties of these modes imply Fm (3) over barm symmetry of the lattice, indicative for on average an ordered distribution of Fe and Na atoms in the lattice. We further show that temperature dependence of the Raman modes, such as changes in the phonon line width and their energies, suggests high phonon anharmonicity, typical for double perovskite materials. Resonant multiphonon Raman scattering reveals the presence of high-lying band states that mediate strong electron-phonon coupling and give rise to intense nA(1g) overtones up to the fifth order. Strong electron-phonon coupling in Cs2NaFeCl6 is also concluded based on the Urbach tail analysis of the absorption coefficient and the calculated Frohlich coupling constant. Our results, therefore, suggest significant impacts of phonon-phonon and electron-phonon interactions on electronic properties of Cs2NaFeCl6, important for potential applications of this novel material.
  •  
18.
  • Zhang, Bin, et al. (författare)
  • Photoactivated Second Harmonic Generation in Centrosymmetric Double Perovskites
  • 2023
  • Ingår i: ACS Photonics. - : American Chemical Society (ACS). - 2330-4022. ; 10:9, s. 3350-3358
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the firstobservation of second harmonic generation (SHG)from halide double perovskites single crystals, a promising classof materials for low-cost and versatile optoelectronic applications,owing to their enormous structural flexibility and environmental friendliness.We show that the SHG efficiency of these materials with centrosymmetriccrystalline structures critically depends on the measurement temperature.At high temperatures, it is determined by a surface contribution butincreases by up to 3 orders of magnitude at low temperatures (T < 137 K for Cs2NaFeCl6 and T < 250 K for Cs2AgBiBr6) underlight illumination within several minutes. We attribute this enhancementto the build-up of a light-induced electric field within the near-surfaceregion, which generates an additional contribution to the SHG process.This DC electric field is found to be predominantly oriented orthogonallyto the sample surface, as deduced from the six-fold rotational symmetryof the SHG azimuthal pattern. The electric field formation is explainedby photoinduced charge transfer from deep surface-related states totraps in the bulk region or vice versa, mainly driven by diffusion.Furthermore, the inscribed electric field can be maintained for hoursat low temperatures and can only be erased by raising the temperaturedue to carrier detrapping. Our findings, therefore, highlight theimportance of the surface states in double perovskites, which couldbe utilized for enhancing the nonlinear properties of these centrosymmetricmaterials.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-18 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy