SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jitschin R) "

Sökning: WFRF:(Jitschin R)

  • Resultat 1-16 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Mougiakakos, D, et al. (författare)
  • Increased thioredoxin-1 production in human naturally occurring regulatory T cells confers enhanced tolerance to oxidative stress
  • 2011
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 117:3, s. 857-861
  • Tidskriftsartikel (refereegranskat)abstract
    • Levels of regulatory T cells (Tregs) are increased in different cancer types as well as in inflammatory diseases, such as rheumatoid arthritis. Treg accumulation may result from aberrant proliferation and trafficking as well as greater resilience to oxidative stress compared with conventional T cells. This enhanced antioxidative capacity of Tregs possibly serves as feedback inhibition during inflammation and prevents uncontrolled immune reactions by favoring survival of suppressor rather than effector cells. In this study, we demonstrate that human Tregs express and secrete higher levels of thioredoxin-1, a major antioxidative molecule. Thioredoxin-1 has an essential role in maintaining their surface thiol density as the first line of antioxidative defense mechanisms and is sensitive to proinflammatory stimuli, mainly tumor necrosis factor-α, in a nuclear factor-κB-dependent fashion. The antiapoptotic and oncogenic potential of (secreted) Trx-1 suggests that it may exert effects in Tregs beyond redox regulation.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Jitschin, R, et al. (författare)
  • Alterations in the cellular immune compartment of patients treated with third-party mesenchymal stromal cells following allogeneic hematopoietic stem cell transplantation
  • 2013
  • Ingår i: Stem cells (Dayton, Ohio). - : Oxford University Press (OUP). - 1549-4918 .- 1066-5099. ; 31:8, s. 1715-1725
  • Tidskriftsartikel (refereegranskat)abstract
    • Adoptive transfer of third-party mesenchymal stromal cells (MSCs) has emerged as a promising tool for the treatment of steroid-refractory graft-versus-host disease (GVHD). Despite numerous in vitro studies and preclinical models, little is known about their effects on the patients' immune system. We assessed immune alterations in the T-cell, B-cell, natural killer cell, dendritic cell, and monocytic compartments of steroid-refractory GVHD patients 30, 90, and 180 days after MSC (n = 6) or placebo (n = 5) infusion, respectively. Infused MSCs were bioactive as suggested by the significant reduction in epithelial cell death, which represents a biomarker for acute GVHD. There were several indications that MSCs shift the patients' immune system toward a more tolerogenic profile. Most importantly, infusion of MSCs was associated with increased levels of regulatory (forkhead box P3 (FOXP3)+ and interleukin (IL)-10+) T-cells, reduced pro-inflammatory IL-17+ T(Th17)-cells, and skewing toward type-2 T-helper cell responses. Furthermore, IL-2, which has been recently shown to exert a positive immune modulating effect in GVHD patients, was higher in the MSC patients at all evaluated time points during 6 months after MSC-infusion. Overall, our findings will contribute to the refinement of monitoring tools, for assessing MSC treatment-efficacy and increase our understanding regarding the MSCs' in vivo effects.
  •  
9.
  •  
10.
  •  
11.
  • Jitschin, R, et al. (författare)
  • Stromal cell-mediated glycolytic switch in CLL cells involves Notch-c-Myc signaling
  • 2015
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 125:22, s. 3432-3436
  • Tidskriftsartikel (refereegranskat)abstract
    • Stromal cells promote a glycolytic switch in CLL cells in a Notch-c-Myc signaling-dependent manner. Targeting glucose metabolism or the Notch-c-Myc signaling pathway could be exploited to breach stromal cell–mediated CLL drug resistance.
  •  
12.
  •  
13.
  • Moll, Guido, et al. (författare)
  • Mesenchymal Stromal Cells Engage Complement and Complement Receptor Bearing Innate Effector Cells to Modulate Immune Responses (Open Access)
  • 2011
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 6:7, s. e21703-
  • Tidskriftsartikel (refereegranskat)abstract
    • Infusion of human third-party mesenchymal stromal cells (MSCs) appears to be a promising therapy for acute graft-versus-host disease (aGvHD). To date, little is known about how MSCs interact with the body's innate immune system after clinical infusion. This study shows, that exposure of MSCs to blood type ABO-matched human blood activates the complement system, which triggers complement-mediated lymphoid and myeloid effector cell activation in blood. We found deposition of complement component C3-derived fragments iC3b and C3dg on MSCs and fluid-phase generation of the chemotactic anaphylatoxins C3a and C5a. MSCs bound low amounts of immunoglobulins and lacked expression of complement regulatory proteins MCP (CD46) and DAF (CD55), but were protected from complement lysis via expression of protectin (CD59). Cell-surface-opsonization and anaphylatoxin-formation triggered complement receptor 3 (CD11b/CD18)-mediated effector cell activation in blood. The complement-activating properties of individual MSCs were furthermore correlated with their potency to inhibit PBMC-proliferation in vitro, and both effector cell activation and the immunosuppressive effect could be blocked either by using complement inhibitor Compstatin or by depletion of CD14/CD11b-high myeloid effector cells from mixed lymphocyte reactions. Our study demonstrates for the first time a major role of the complement system in governing the immunomodulatory activity of MSCs and elucidates how complement activation mediates the interaction with other immune cells.
  •  
14.
  •  
15.
  • Simonson, Oscar E., et al. (författare)
  • In Vivo Effects of Mesenchymal Stromal Cells in Two Patients With Severe Acute Respiratory Distress Syndrome
  • 2015
  • Ingår i: Stem Cells Translational Medicine. - : Oxford University Press (OUP). - 2157-6564 .- 2157-6580. ; 4:10, s. 1199-1213
  • Tidskriftsartikel (refereegranskat)abstract
    • Mesenchymal stromal cells (MSCs) have been investigated as a treatment for various inflammatory diseases because of their immunomodulatory and reparative properties. However, many basic questions concerning their mechanisms of action after systemic infusion remain unanswered. We performed a detailed analysis of the immunomodulatory properties and proteomic profile of MSCs systemically administered to two patients with severe refractory acute respiratory distress syndrome (ARDS) on a compassionate use basis and attempted to correlate these with in vivo anti-inflammatory actions. Both patients received 2 x 10(6) cells per kilogram, and each subsequently improved with resolution of respiratory, hemodynamic, and multiorgan failure. In parallel, a decrease was seen in multiple pulmonary and systemic markers of inflammation, including epithelial apoptosis, alveolar-capillary fluid leakage, and proinflammatory cytokines, microRNAs, and chemokines. In vitro studies of the MSCs demonstrated a broad anti-inflammatory capacity, including suppression of T-cell responses and induction of regulatory phenotypes in T cells, monocytes, and neutrophils. Some of these in vitro potency assessments correlated with, and were relevant to, the observed in vivo actions. These experiences highlight both the mechanistic information that can be gained from clinical experience and the value of correlating in vitro potency assessments with clinical effects. The findings also suggest, but do not prove, a beneficial effect of lung protective strategies using adoptively transferred MSCs in ARDS. Appropriate randomized clinical trials are required to further assess any potential clinical efficacy and investigate the effects on in vivo inflammation. STEM CELLS TRANSLATIONAL MEDICINE 2015;4:1199-1213
  •  
16.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-16 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy