SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Joardar V.) "

Sökning: WFRF:(Joardar V.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wortman, J. R., et al. (författare)
  • The 2008 update of the Aspergillus nidulans genome annotation: A community effort
  • 2009
  • Ingår i: Fungal Genetics and Biology. - : Elsevier BV. - 1096-0937 .- 1087-1845. ; 46, s. S2-S13
  • Tidskriftsartikel (refereegranskat)abstract
    • The identification and annotation of protein-coding genes is one of the primary goals of whole-genome sequencing projects, and the accuracy of predicting the primary protein products of gene expression is vital to the interpretation of the available data and the design of downstream functional applications. Nevertheless, the comprehensive annotation of eukaryotic genomes remains a considerable challenge. Many genomes submitted to public databases, including those of major model organisms, contain significant numbers of wrong and incomplete gene predictions. We present a community-based reannotation of the Aspergillus nidulans genome with the primary goal of increasing the number and quality of protein functional assignments through the careful review of experts in the field of fungal biology. (C) 2009 Elsevier Inc. All rights reserved.
  •  
2.
  • Archana, M. S., et al. (författare)
  • Influence of applied pressure during field-assisted sintering of Ti(C,N)-WC-FeAl based nanocomposite
  • 2015
  • Ingår i: Ceramics International. - 0272-8842 .- 1873-3956. ; 41:2, s. 1986-1993
  • Tidskriftsartikel (refereegranskat)abstract
    • Ti(C,N)-WC-FeAl based nanocomposites are processed by field-assisted sintering at 1500 degrees C. The phase and microstructural evolution during the process under the influence of different applied pressures of 30, 50 and 100 MPa are studied using x-ray diffraction and scanning electron microscopy. Lattice parameters of (Ti,W)(C,N) solid solution and binder phases after sintering are found to vary with applied pressure. The nanocomposite grains are observed to possess a core-rim microstructure. Microstructural variations in terms of type, size and fraction of "corerim" structure as a function of applied pressure are investigated. The hardness and indentation fracture toughness values are in the range of 17.6-18.4 GPa and 5.9-6.8 MPa root m, respectively. These values are comparable with those reported for Ti(C,N)-based composites with metal binder. (C) 2014 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
  •  
3.
  • Archana, M. S., et al. (författare)
  • Nanocrystalline Phases During Mechanically Activated Processing of an Iron (Fe) Aluminum (40 at% Al) Alloy
  • 2014
  • Ingår i: Materials and Manufacturing Processes. - 1042-6914 .- 1532-2475. ; 29:7, s. 864-869
  • Tidskriftsartikel (refereegranskat)abstract
    • Influence of processing conditions on in situ generation of nanocrystalline Fe(3)AlCx and Fe-Al phases during mechanically activated annealing and sintering of Fe-40 at% Al alloy was evaluated. Fe(3)AlCx, Fe3Al and ordered FeAl phases evolved even at a low temperature of 400 degrees C. The presence of carbide phase was attributed to the free carbon originating from the organic process control agent while its formation at low temperature was correlated to fast diffusion of C in the lattice assisted by the nanocrystalline structure coupled with the presence of thermal vacancies in the Fe-40 at% Al alloy. The as-sintered composite showed improved mechanical properties.
  •  
4.
  • Archana, M. S., et al. (författare)
  • Rapid consolidation of FeAl-Fe3AlCx ultrafine composites by mechanically activated field-assisted technique
  • 2014
  • Ingår i: Materials Science & Engineering. - 0921-5093 .- 1873-4936. ; 611, s. 298-305
  • Tidskriftsartikel (refereegranskat)abstract
    • Rapid sintering of FeAl based ultrafine composites by a mechanically activated field-assisted process was evaluated. The influence of applied load and isothermal holding time on the as-sintered microstructure and mechanical properties was investigated. Hardness of the nanocomposite was determined by micro- and nano-indentation techniques, while the grain size was ascertained from electron backscatter diffraction and image analysis of scanning electron micrographs. A higher applied load as well as the isothermal holding time led to better dispersion of the in situ grown Fe3AlCx carbide particles in FeAl matrix. Significant improvement in the hardness and marginal rise in elastic constant were also observed in the fast sintered ultrafine composites when compared to previous reports. The increase in hardness was attributed to the presence of a carbide phase and fine-grained microstructure. (C) 2014 Elsevier B.V. All rights reserved.
  •  
5.
  • Kumar, Rajiv, et al. (författare)
  • Effect of chromium and aluminum addition on anisotropic and microstructural characteristics of ball milled nanocrystalline iron
  • 2016
  • Ingår i: Journal of Alloys and Compounds. - : Elsevier BV. - 0925-8388 .- 1873-4669. ; 671, s. 164-169
  • Tidskriftsartikel (refereegranskat)abstract
    • Prior studies on synthesis of nanocrystalline elements have discussed the effect of ball milling on lattice parameter, crystallite size, and micro-strain. For elemental milled powders, the anisotropic peak broadening does not change with increasing milling time. However, the effect of alloying addition on the anisotropic behavior of ball milled nanocrystalline powders remains an unexplored area. Here we report the effect of chromium and aluminum addition on the anisotropic behavior of iron in nanocrystalline Fe–20Cr–5Al (wt%) alloy powders synthesized by ball milling. The experimental results show that the anisotropic behavior of iron changes towards isotropic with milling. This change was also correlated to the theoretically calculated anisotropic factor from the change in elastic constant of iron due to milling. Addition of alloying elements exhibited a monotonic rise in the lattice parameter with crystallite size, which was attributed to the excess grain boundary interfacial energy and excess free volume at grain boundaries. Transmission electron microscopy image confirmed the crystallite size and nature of dislocation obtained using modified Williamson-Hall method.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy