SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jokitalo E) "

Sökning: WFRF:(Jokitalo E)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Aspatwar, Ashok, et al. (författare)
  • Abnormal cerebellar development and ataxia in CARP VIII morphant zebrafish
  • 2013
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 22:3, s. 417-432
  • Tidskriftsartikel (refereegranskat)abstract
    • Congenital ataxia and mental retardation are mainly caused by variations in the genes that affect brain development. Recent reports have shown that mutations in the CA8 gene are associated with mental retardation and ataxia in humans and ataxia in mice. The gene product, carbonic anhydrase-related protein VIII (CARP VIII), is predominantly present in cerebellar Purkinje cells, where it interacts with the inositol 1,4,5-trisphosphate receptor type 1, a calcium channel. In this study, we investigated the effects of the loss of function of CARP VIII during embryonic development in zebrafish using antisense morpholino oligonucleotides against the CA8 gene. Knockdown of CA8 in zebrafish larvae resulted in a curved body axis, pericardial edema and abnormal movement patterns. Histologic examination revealed gross morphologic defects in the cerebellar region and in the muscle. Electron microscopy studies showed increased neuronal cell death in developing larvae injected with CA8 antisense morpholinos. These data suggest a pivotal role for CARP VIII during embryonic development. Furthermore, suppression of CA8 expression leads to defects in motor and coordination functions, mimicking the ataxic human phenotype. This work reveals an evolutionarily conserved function of CARP VIII in brain development and introduces a novel zebrafish model in which to investigate the mechanisms of CARP VIII-related ataxia and mental retardation in humans.
  •  
3.
  •  
4.
  •  
5.
  • Korhonen, L., et al. (författare)
  • Expression of X-chromosome linked inhibitor of apoptosis protein in mature Purkinje cells and in retinal bipolar cells in transgenic mice induces neurodegeneration
  • 2008
  • Ingår i: Neuroscience. - : Elsevier BV. - 0306-4522 .- 1873-7544. ; 156:3, s. 515-526
  • Tidskriftsartikel (refereegranskat)abstract
    • Transgenic mice with overexpression of the caspase-inhibitor, X-chromosome-linked inhibitor of apoptosis protein (XIAP) in Purkinje cell (PC) and in retinal bipolar cells (RBCs) were produced to study the regulation of cell death. Unexpectedly, an increased neurodegeneration was observed in the PCs in these L7-XIAP mice after the third postnatal week with the mice exhibiting severe ataxia. The loss of PCs was independent of Bax as shown by crossing the L7-XIAP mice with Bax gene-deleted mice. Electron microscopy revealed intact organelles in PCs but with the stacking of ER cisterns indicative of cell stress. Immunostaining for cell death proteins showed an increased phosphorylation of c-Jun in the PCs, suggesting an involvement in cell degeneration. Apart from PCs, the number of RBCs was decreased in adult retina in line with the expression pattern for the L7 promoter. The data show that overexpression of the anti-apoptotic protein XIAP in vulnerable neurons leads to enhanced cell death. The mechanisms underlying this neurodegeneration can be related to the effects of XIAP on cell stress and altered cell signaling.
  •  
6.
  •  
7.
  • Scharaw, S, et al. (författare)
  • Golgi organization is a determinant of stem cell function in the small intestine
  • 2023
  • Ingår i: bioRxiv : the preprint server for biology. - : Cold Spring Harbor Laboratory.
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Cell-to-cell signalling between niche and stem cells regulates tissue regeneration. While the identity of many mediating factors is known, it is largely unknown whether stem cells optimize their receptiveness to niche signals according to the niche organization. Here, we show that Lgr5+ small intestinal stem cells (ISCs) regulate the morphology and orientation of their secretory apparatus to match the niche architecture, and to increase transport efficiency of niche signal receptors. Unlike the progenitor cells lacking lateral niche contacts, ISCs orient Golgi apparatus laterally towards Paneth cells of the epithelial niche, and divide Golgi into multiple stacks reflecting the number of Paneth cell contacts. Stem cells with a higher number of lateral Golgi transported Epidermal growth factor receptor (Egfr) with a higher efficiency than cells with one Golgi. The lateral Golgi orientation and enhanced Egfr transport required A-kinase anchor protein 9 (Akap9), and was necessary for normal regenerative capacityin vitro. Moreover, reduced Akap9 in aged ISCs renders ISCs insensitive to niche-dependent modulation of Golgi stack number and transport efficiency. Our results reveal stem cell-specific Golgi complex configuration that facilitates efficient niche signal reception and tissue regeneration, which is compromised in the aged epithelium.
  •  
8.
  •  
9.
  • Yu, L Y, et al. (författare)
  • Regulation of sympathetic neuron and neuroblastoma cell death by XIAP and its association with proteasomes in neural cells
  • 2003
  • Ingår i: Molecular and Cellular Neuroscience. - : ACADEMIC PRESS INC ELSEVIER SCIENCE. - 1044-7431 .- 1095-9327. ; 22:3, s. 308-318
  • Tidskriftsartikel (refereegranskat)abstract
    • XIAP (X chromosome-linked inhibitor of apoptosis protein) has been shown to inhibit cell death in a variety of cells. XIAP binds to active caspases, but XIAP also has a carboxy-terminal RING domain that can regulate cell death via protein degradation. Here we have studied the function of full-length and RING-deleted XIAP in mouse sympathetic neurons microinjected with expression plasmids and in neuroblastoma cells stably overexpressing these proteins. Both full-length and RING-deleted XIAP-protected sympathetic neurons against death induced by nerve growth factor (NGF) withdrawal to about the same extent. However, the two proteins were differentially localized in transfected neurons, with RING-deleted XIAP present in the cytoplasm and full-length XIAP found mostly in cytoplasmic protein aggregates, as revealed by transmission electron microscopy. The occurrence of these aggregates was blocked by lactacystin, a proteasome inhibitor. In neuroblastoma cells, RING-deleted XIAP protected against death induced by staurosporine, thapsigargin, or serum withdrawal, whereas full-length XIAP was without effect. Full-length, but not RING-deleted, XIAP was degraded and ubiquitinated in the neuroblastoma cells. The results show that the presence of the RING domain differentially affected the neuroprotective ability of XIAP in sensory neurons and neuroblastoma cells. The RING domain was essentially required for the proteasomal association of XIAP and for its ubiquitination. (C) 2003 Elsevier Science (USA). All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy